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1. Introduction 

The computation of perturbative amplitudes in quantum chromodynamics is important to our 

understanding both of experimental results on jet production at hadron colliders, and of possible 

backgrounds to new physics. In recent years, a great deal of progress has been made in computing 

tree-level amplitudes. Three main ingredients contributed to these advances: use of a spinor helicity 

basis, such aa that of Xu, Zhang, and Chang [l], for glum polarization vectors; the Berends-Giele 

recurrence relations for amplitudes [2, 31; and the color decomposition of the amplitudes [4,5,6,7]. 

In this paper, we shall derive a color decomposition for one-loop amplitudes in a pure SCJ(N) gauge 

theory. 

Open string theories provide an easy way to derive the tree-level decomposition and associated 

properties of the kinematical factors, as we shall review in the next section. They can also be 

used to obtain a heuristic understanding of the decomposition of one-loop amplitudes, as we shall 

discuss in section 3. The formal derivation of the representation for loop amplitudes, presented 

in sections 4 and 5, will rely on appropriately constructed heterotic string theories. In section 6, 

we discuss the decoupling equations, which yield constraints on the kinematic factors that are the 

one-loop analogs of the tree-level ‘twist’ [8,9] ‘dual Ward’ 161, or ‘cyclic’ [z] identity, and display 

the form of solutions to the decoupling equations for the four-, five-, and six-glum amplitudes. 

We present the general form of the one-loop decoupling equations in section 7; these decoupling 

equations are an important tool for checking practical calculations. In section 8, we discuss the 

expansion of the tree-level cross section in inverse powers of the number of colors, and in section 9, 

we give the corresponding form for the next-to-leading (O(a”+‘)) correction to the squared matrix 

element. In section 10, we summarize the decomposition and the decoupling equations. In the 

appendices, we discuss a number of string-theoretic and group-theoretic issues, and outline the 

derivation of the color decomposition from a Feynman diagram approach. 

Some aspects of the color decomposition of gauge-theory loop amplitudes have previously been 

discussed by Mangano [7]. Color decompositions along different lines were discussed by Cvitanovic, 

Lauwers, and Scharbach [IO] and by Zeppenfeld [ll]. 

2. Tree Amplitudes 

In an open string theory, the full on-shell amplitude for the scattering of R massless vector 

mesons can be written as the sum over non-cyclic permutationa of the external legs of Ghan-Paton 
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factors [12] times Koba-Nielsen partial amplitudes [13], 

dy({ki,Ei,ai}) = g-1 .,& Tr(PW-‘~(‘~ . . .T”+~)A:N(k,t,j, E+); . . .; k,(,), E+,)) 
” n 

(2.1) 

where k;, Ei, and ai are respectively the momentum, polarization vector, and color index of the 

i-th external glum. The 2’” are the set of hermitian traceless N x N matrices (normalized so that 

Tr(?‘“T”) = P’), and .7,/Z, is the set of non-cyclic permutations of (1,. . . , n}. 

In the i&r&e-tension limit, a U(N) string theory reduces to a U(N) gauge theory, where 

the matter content depends on the type of the original string theory. For tree amplitudes where 

all the external legs are gluons, however, the matter content is irrelevant, since the matter fields 

cannot appear as internal lines. Thus one can use the open bosonic string, the simplest of all string 

constructions, at tree level. The decomposition of the string amplitude leads immediately to a 

decomposition of on-shell n-glum amplitudes, 

...TOlc~))A,(k,(l),~,(l)i . . ..k+).qn)) . (2.2) 

The partial amplitudea Aj possess a number of nice properties that follow immediately from 

the properties of the Koba-Nielsen amplitudes. Each is gauge invariant on shell, that is invariant 

under the substitution ci -+ ci + Xki for each leg independently. It is also invariant under cyclic 

permutation of its arguments, and satisfies a reflection identity, 

A(n,..., 1) = (-l)“A,(l,...,n), (2.3) 

where we use the standard notation 

A,(l,. . . ,n) = A,(kl,cl;. . .; k,,,c,) . (2.4) 

The U(1) gauge boson is an integral part of the string theory (its presence is necessary for 

unitarity), but in the infinite-tension limit, it must decouple from SU(N) gauge boson amplitudes. 

We can use this observation. 

-L({k, ~,ai):;;‘; km E,, au(,)) = 0 (2.5) 

to derive a decoupling identity, simply by extracting the coefficient of Tr(T”1 . . T”+l), which is 

. . ..u(n- l),n) = 0. (2.6) 
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(This identity can also be derived starting with the twist operator in the open string theory [8]. 

Mangeno, Parke, and Xu [5] term the identity a dual Ward identity.) Substituting additional 

photons for gluons leads to equations which are linearly dependent on equation (2.6). 

The decoupling identity (2.6) is a special case of the more general Berends-Giele identities 

[14,15,16], which may be derived by considering U(N) currents (rather than amplitudes) of glum 

taken from two or more commuting subalgebras of U(N). Th ese vanish identically because any 

internal line must fall into one of the different subalgebras, and therefore cannot connect the 

different kids of gluons. These considerations lead to the equation 

c A(dl), . . , o(n - l),n) = 0 (2.7) 
UEM(1 v..., ml;ml+l,..., m2;ml+l,...; . ..( n-1) 

where M({ai}; {bj}; {CL};. .) is the set of all mergings of the sets {a;}, {bj}, {ck}, . . ., that is, all 

permutations of the set {ai, 6j, ck, . .} that p reserve the ordering within each of the subsets {a;), 

{bj}, {Q}, . . . separately. 

At loop level, however, these amplitudes willnot vanish, because internallines can carry charges 

coupling the two sorts of gluons to each other; the general Berends-Giele identities are therefore not 

expected to have a one-loop counterpart. We should expect only analogs of the photon decoupling 

equation (2.6). 

The partial amplitudes also satisfy tree-level unitarity, which is to say they factorize on poles 

of a consecutive set of their arguments. 

3. Open Strings at Loop Level 

Oriented open strings provide a simple intuitive understanding of the color structure of NJ(N) 

gauge theory loop amplitudes. J.n all open string models, the associated gauge group arises from 

explicit Ghan-Paton factors [12], in contrast to closed strings where the gauge group arises implicitly 

[17,18]. The Ghan-Paton factors cm be understood in terms of ‘color charges’ sitting at the ends of 

the string. As the string propagates, it sweeps out a world-sheet, the analog to a particle’s world- 

line, and the ends of the string move along the boundaries of the string world-sheet. Interacting 

strings give rise to a world-sheet with additional boundaries corresponding to the external states. 

Theese boundaries also carry color charges appropriate to the given external states. The color 

structure of the amplitude is thus associated with the boundary of the string world-sheet describing 

the scattering process. 

The rules of open string constructions [19,20] tell us that each external gluon has an associated 

G&Mann charge matrix which is its Ghan-Paton factor. Each partial amplitude corresponds to a 
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given ordering of the gluons along each of the boundaries of open string diagram. The coefficient 

of the partial amplitude is simply the trace of the product of the glum charges, taken along each 

of the boundaries of the string world-sheet. A boundary containing no external ghmns gives rise to 

a trace over the identity matrix, that is a factor of the number of colors, N,. 

For example, the Ghan-Paton factor associated with the five-point partial amplitude repre- 

sented by the planar diagramin fig. 1 is N, Tr(Ta~Ta2Ta~T”*T”‘) while for the non-planar diagram 

in fig. 2 the factor is Tr(T”‘T”‘T”“) Tr(Ta’T”). The full amplitude is the sum of the partial string 

amplitudes, with associated color trace factors, over all permutations of the external legs which do 

not leave the Ghan-Paton traces invariant. 

At one loop, the schematic form of the n-point amplitude is 

dp’({q, /q, Ci}) = 

c NC Tr(T-1 . ..Ta-~-I)A.“‘“g(~~(~),~o(l); . . .; k,+),~,+,)) 
UES./Z. 

+c c Tr(T”-(‘1 . . To*(m)) Tr(Ta+-+‘) . . .T’-(-))A;“‘“g(&,(l), Ed;. . .; k,(,), By) 
m oes./z,xz,-.” 

+ O(d) 
(3.1) 

where the first term appears when all gluons are attached to a single boundary, while the second 

term appears when gluons are attached to both boundaries. The higher order corrections in the 

inverse string tension a’ (which do contain terms with three or more non-trivial traces) arise 

from graviton exchange, corresponding to pulling some of the holes of higher loop diagrams into 

long tubes. Such contributions disappear in the gauge theory (or infinite-tension) limit where the 

coupling to gravitons and other colorless states vanishes. 

This discussion is only a heuristic one, however, for in contrast to the case of tree level ampli- 

tudes, at loop level all string states which couple to the gauge bosons can circuMe inside the loops; 

thus detailed control of the massless spectrum is required. Although it is possi’ble to build some 

consistent open superstring models in four dimensions [21], the technology is not as advanced as 

for h&erotic strings, and thus we cannot construct completely consistent open string models which 

contain a pure SU(N) gauge theory in the low-energy limit. It is possible to construct a range of 

models, so the conclusions drawn from the open-string representation are not necessarily specific 

to any particular model; but we cannot use open strings to prone the SU(N) color decomposition. 

We give a proof of the decomposition at one-loop order based on a heterotic string construction in 

the following two sections (the reader who does not wish to indulge in the technicalities of h&erotic 

strings may skip the details of the next two sections), and return to applications of the decompo- 

sition in section 6. It is also possible to give a derivation based on Feynman diagrams, which we 
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outline in appendix VI. Such a derivation (and discussion elsewhere [9]) makes clear that each par- 

tial amplitude receives contributions from many Feynman diagrams, and thus does not necessarily 

provide an efficient method of calculating the partial amplitudes. In contrast, the h&erotic string 

approach has the advantage of providing e. concrete and direct formula for the partial amplitudes. 

This allows, for example, the full utilization of the power of the spinor-h&city basis and in other 

ways provides an efficient means of evaluating the partial amplitudes. The details of one such 

calculation will be presented elsewhere [22]. 

Beyond one loop, the open string picture (fig. 3) suggests that in the gauge theory limit of 

an L-loop amplitude exactly L + 1 traces appear in the coefficient of any given partial amplitude, 

including traces over the identity for boundaries with no attached gluons, and that the gauge 

theory amplitude is simply the sum over all independent partial amplitudes with exactly L f 1 

accompanying traces. While the broad outline of this decomposition - the appearance of L f 1 

or fewer non-trivial traces - is in agreement with a diagrammatic derivation along the lines of 

appendix VI, the latter derivation allows that coefficients of the terms with fewer than L + 1 traces 

might carry fewer powers of NC than suggested by the string picture. (For example, at two loops, 

the diagramma tic derivation does not rule out the appearance of terms with a single trace and no 

powers of NC. Such terms might conspire to cancel, and do for the two-point function, but it is 

not clear that will happen in general.) If a more precise statement than the one emerging from 

the diagramma tic derivation can be made, it must await the multi-loop analogs of the formalism 

presented in the following ~sections. 

4. H&erotic String Loop Amplitudes 

If we wish to write an SU(N) gauge theory loop amplitude as the infinite-tension limit of 

a string amplitude, we have to control the massless matter content of the string theory, because 

colored massless matter particles (if any) can run around the loops. It is possible to build heterotic 

string theories whose infinite-tension limit is 8 non-Abelian gauge theory where one of the factors 

is an SU(N) with no matter fields. The technology needed for such a construction is precisely the 

one used to construct four-dimensional string models. We have discussed the construction of such 

models, for which we use the fermionic formulation of Kawd, Lewellen, and Tye (KLT), in previous 

work [23]; a sample model is summar’ lzed in appendix I. (Bosonic strings always contain unwanted 

mansless scalars and tachyons, while four-dimensional type II [19,24] and type I [21] superstrings 

do not have a rich enough variety of models for our purposes.) 

The three basic types of four-dimensional h&erotic superstring constructions are the bosonic 

formulations [25 1, fermionic formulations [26,27], and direct superconformal field theory construc- 
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tions [28]. These constructions have generated a huge class of consistent four-dimensional super- 

string models; the freedom in constructing models is so large that strings with virtually any low 

energy gauge group with rank 22 or less can be built. In this paper, we again use the fern&tic for- 

mulation in the notation of Kawai, Lewellen and Tye [26]. We have found the fermionic formalism 

to be particularly straightforward to use for constructing models as well as scattering amplitudes 

although one could use the other formalisms as well. 

These constructions of the four-dimensional string models are based on analyses of the one-loop 

partition string function. In their construction, Kawai et al. require world-sheet reparameterization 

invariance, world-sheet supersymmetry, freedom from the conformal anomaly, one-loop modular 

invariance invariance [29], and a physically sensible projection on the spectrum. (The last condition 

is actually equivalent to two- and higher-loop modular invariance [27,30].) 

In the fermionic formuletion all internal degrees of freedom (which carry the non-abelian gauge 

charges) are taken to be world-sheet fermions [17]. In general each of the world-sheet fermions can 

have independent boundary conditions on the one-loop world sheet torus, 

+l(t + 2nn, 0 + Z*m) = e’*i(Q~n+@-q7,(f,o) . (4.1) 

Corresponding to each set of boundary conditions on the nt fermions is a one-loop partition function 

2; = n;L, Zg,‘, (The explicit value of these partition functions in terms of &functions is given 

in Appendix III.) The world-sheet fermionic contribution to the full string partition function is a 

linear combination 

z ‘r*mion = c c~.q (4.2) 

where the KLT coefficients C’$ must be chosen so that the full fern&tic partition function is 

modular invariant and represents a physically sensible projection on the space of states. Rules for 

choosing such coefficients have been discussed in detail in refs. [26,27]. 

The full one-loop partition function of the string is the product of the above fermionic partition 

function with the bosonic partition function 2, given in Appendix JII. 

Once the partition function of a particular model has been determined the procedure for 

computing a scattering amplitude is straightforward using the vertex operators [31,20] of the theory. 

The amplitude is given by the expectation value of the vertex operators using the world-sheet action 

for free fermions and bosons, 

dp”S ({I%, hi, Ei)) P” /[DXl[O$71 exp [-S] VD’ (k,, El). . . vo- (k,, En) . (4.3) 

For a bosonic string, the world-sheet action S = (4sa’)-’ J&t qrVaPXp@X”; it is a bit more 

complicated for a four-dimensional heterotic string (see, for example, ref. (261). Using Wick’s 
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theorem and expressions for the Green functions, these the expectation values can be computed 

explicitly. (The details of performing such computations in the operator formalism may be found 

in ref. [20].) 

We are interested in an amplitude with n external gluons. 

can be written as follows*, 

The one-loop string amplitude 

1 
A = 2(16nz) 

x,,/‘-l(&e)~ T”,,% ...T”-,m”- 

/& / (~A%, d&a d&d&4 ) / @‘u.) 73$‘;(4 

8.8 

- t+lBj26mi~,GF 
1 

(4.4) 

- 8i30jsXki kj GF 

+ ifi(edj4ki . Ej f eirejJkj . ci) GF 

- ifi(eiaei4kj . ei - ejsej4ki . cj) bBtFi _ zjj) 

+ &dOjrri . Ej GF 

+ Bi3tLOj3Oj4ai . Ej CTG:B(Fi - Fj) 1 
where X = ~a’ is the inverse string tension; the &,j are Grassman integration variables, and the 

_ 
V; are integrated over the torus specified by the modular parameter 7; a’ and 0 are the various 

boundary conditions for the world-sheet fermions, over which one must sum into order to obtain 

a modular-invariant answer; 2$ is the partition function for a given set of boundary conditions; 

GF[‘$+] are the left-mover fermionic Green functions, with a,,, and fl;;; the boundary conditions 

on tht torus of world-sheet fermions associated with the gauge group of interest; GF[~;] are the 

right-mover fermionic Green functions, with a~ and 0~ the boundary conditions of the world-sheet 

fermions carrying the space-time index (which occupies the first right-mover postion in the world- 

sheet boundary condition vector); G s are the bosonic Green functions (dots indicate derivatives 

* Thh form ia valid in all string sectors which do not contain world-sheet serwnodes, such M the sectors of 
interest to us - those containing the glum,. 
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with respect to Y); and SF[ z:] are the self-contractions of the left-mover fern-dons. Our convention 

is that the left-movers corrs”pond to the bosonic string while the right-movers correspond to the 

superstring. Detailed expressions for all of these quantities are given in the appendices. (The form 

of the amplitude given here differs slightly from the standard form, in that we have chosen to 

integrate over all YS, and have compensated by dividing by the volume of the torus, rather than 

fixing VW) 

A rather striking feature of the amplitude is that it is valid for arbitrary numbers of gluon 

legs. In contrast, the usual Feynman rules do not yield a comparable concrete formula in any 

straightforward manner. 

It will be helpful to distinguish three pieces of the integrand: the left-mover contributions 

(which are a function of the vi alone), 

z((vi}) = / (fi &I d&s ) 
kl 

the right-mover contributions (which are a function of the iii alone), 

R({Yi,ki,Eil) = / (fide, deir ) 
kl 

$~XP [ -&&dk * kjG,[i:](vi-pj) 

f ifi(&#jrki . Ej t eilej3kj . ci) GF 

- ih(fhei~kj ’ ei - ej3ej,ki . Ej) bB(yi _ iij) 

t thOjrci . Ej G.v 

t &3&40j38jrei . cj E,(Fi - sj) I 
and~the partition function and parts common to both movers, 

E({virz<, k, c;}) = c C$22(~) fi exp [A&;. kjGs(vi - vj)] . 
%B i<j 
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The overall normalization will be denoted by N. 

If we perform the Bil ad Bil integrals, the P, will contract the indices of the charge matrices, 

and we will obtain an expression for the string amplitude as a sum of kinematic coefficients, 

4 s’r’nK zz c TQ”1 . . .T”i) . . .‘J’+“’ . . .‘J’m) 

(4.8) 
@vi Z(fvl)E(lv, k)W(G k cl) 

where the s-runs over all trace structures with up to n traces, and all inequivalent ways of ordering 

the charge matrices in any given trace structure. (For SU(N) amplitudes, only amplitudes with 

at least two charge matrices per trace, and thus up to Ln/ZJ traces, will survive; but amplitudes 

containing a U(l) gauge boson will not vanish in the full string theory, and will be important in 

the consideration of the decoupling equations.) In the four-point string amplitude, for example, 

the different types of trace structures are 

Tr(T”Tv”T-), Tr(P) Tr(T”‘T”‘P), Tr(TYr”) Tr(T?r~‘), 

n(P) Tr(T”‘) Tr(T”‘T”‘), Tr(T”) n(P) Tr(P) Tr(P). 
(4.9) 

The on-shell amplitude of equation (4.4) is manifestly gauge-invariant, and as a result the 

coefficient of each trace term - the one-loop partial amplitudes - are also invariant under on-shell 

gauge transformations [20]. (We shall return to this point at the end of the section.) The amplitude 

as a whole is of course also Bose symmetric, that is, invariant under the simultaneous interchange 

of {oi, ki, si} ++ {oj, kj, Ej}. This can be seen most easily in the integral by observing that the 

integrand is invariant under the simultaneous interchange of {vi, pi, ai, ki, ci} tt {vj,ijj, aj, kj, cj}; 

and of course any permutation of the V; and tic does not affect the integral, since it is merely 

a relabeling of integration variables. What are the symmetries of the various pieces? Since the 

6” ; are attached to left-mover Green functions with the same external indices, a simultaneous 

permutation of external color indices a and of integration variables Y simply carries left-mover 

contributions along with the corresponding trace structure. Consider, for example, the exchange 

{a., 4 ++ {a#, Q}; the part of the exponential of Green functions involving Y, and v,, transforms 

a8 

e=p - ke,dm- ;,GF (4 lo) 
. -=P - etlev26- . m. ~~ (b - %) - &&16”-~,~F 

since dF[i](-Y) = -GF[~](Y), with . ‘1 b h mm ar e avior (exchange of indices {m,, n,} ++ {m,,n,}) 

for the parts involving only one of V. and uu in a given Green function. The rest of Z is invariant, 
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and on the charge matrices the transformation amounts simply to exchanging the indices of 2’“. 

with those of T”*, 

In particular, if the permutation of the color indices a leaves the trace structure invariant, 

the corresponding permutation on the v will leave the left-mover contribution invariant as well. 

The right-mover pieces R are invariant under a simultaneous permutation of the momenta ki, the 

polarization vectors si, and the integration variables vi; while the common parts E are invariant 

under simultaneous permutations of the momenta k; and all integration variables, vi and sii. Thus 

if we consider the coefficient of a given trace term in the sum of equation (4.8), we iind that it is 

invariant under those permutations of the external momenta and polarization vectors that leave 

the trace structure invariant when applied to the color indices. 

To express this structure a bit more formally, we must introduce a bit of notation. Denote 

by Gr,;,,,,, ,..., m. (G, ia,. , iN) a term with 2 + 1 traces, starting at the ml-th element of the ik, 

ms-th element, and so on: 

Gr,;,,,,, ,,,,, ,,,.(i*, is,. .) = Tr(T”‘l . . . 7?-I-l) n(F-, . . .T”‘-,-I). . . Tr(T”%. . . .T% ) . 

(4.11) 

A trivial trace (when ml = ml+1 or ml = 1) is replaced by the number of colors NC. (The reason 

for the explicit appearance of the number of colors will become more obvious when we consider the 

infinite-tension limit; for the moment, the reader may treat it as an arbitrary convention.) In the 

four-point case, we have in the string amplitude the trace structures Gr,,,; Grrgl; Grli3; GI,;~,~; 

and Gn;w. 

We may now write the full string amplitude as 

<+“({ai, bEi)) = c c Gr,,;~(c~(l). ..c~(n))A;~({k~,~~}) (4.12) 

6’ ~ES./.s”,n 

where 3~ ranges over all distinguishable trace structures, for which we use the convention that 

shorter traces appear first. In this equation, Sni,a is the symmetry group of the given trace structure, 

that is those elements of the permutation group S, which leave the trace structure invariant, 

S,,* = {u E S,I Gr,,,&(l)...~(n)) = Gr,,&l.. .n)} . (4.13) 

The sum over o in equation (4.12) thus instructs us to sum only over inequivalent trace structures. 

In general, the lengths of the strings of charge matrices inside the traces in equation (4.11) are 

different, and the symmetry group is simply a product of cyclic transformations on the elements 

within each trace. In certain cases, however, the lengths of several d&rent traces may be the 

same, in which case the symmetry group also includes the permutations exchanging the equal- 

length traces. 
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From the earlier discussion, we know that the corresponding string partial amplitudes A$$’ 

are invariant under this symmetry group, 

vu E Sn;*, A$$?(o)= A;;F(l...n). (4.14) 

There is one more symmetry of the AZ;? that may be extracted from the integral represen- 

tation implicit in equation (4.8). We may note that changing the sign of every v and i? changes 

the sign of every GF[;;] and dg, while leaving each CB and each GB invariant. Every pair of 

0s amongst the right movers is thus multiplied by -1, so that the right-mover contribution as a 

whole is multiplied by (-I)“, but the right-movers and common part are otherwise invariant. The 

integration measure is unchanged ((-1)‘” = 1). For the left-movers, this inversion exchanges the 

GF[ ;,“I terms in the exponential with the &:F[ Z] t erms, but the interchange of 0s absorbs the sign 

change from the Green function, so for the left-movers, the only effect is on the bm,: each 6”‘” 

tensor has its upper and lower indices interchanged. This has the effect of transposing each charge 

matrix in the trace structure. Putting these transformations together, we find that 

Coeff [Tr(F . . . T’“)] = (-1)“Coeff [Tr(T”1’ . . T’s’ )] = (-1)“Coeff [Tr(T”” . . T”‘)] (4.15) 

and similarly for other trace structures. Introducing a reflection operator, 

%~Im,,...,m. (& ,..., in) = (&-I ,..., iI,&- ,..., i, ,,..., i, ,..., imJ (4.16) 

we may write the reflection identity as 

A;;~s(R,;,&. ..,n)) = (-l)nA;;‘$s(lr.. .,n) . (4.17) 

Each of these partial amplitudes is also gauge invariant on shell; replacing a polarization vector 

with its corresponding momentum gives a vanishing result. Within the string context this is not 

difficult to prove; starting from the gluon vertex operator (III.1.5) and for example setting e1 = kl 

for the first leg the corresponding vertex operator becomes 

V(el = k,) = -&gT,Pj : ~i’(yl)~j(~l)~,eikI’X(vl~~~) : . (4.18) 

If we compute expectation values using this vertex operator instead of the usual one on the first 

leg we obtain a result whose right-mover and common exponential part is a total derivative in i3,. 

Since the torus has no boundaries one might then conclude that the amplitude vanishes. This is 

almost right, but there are two subtleties to be addressed. The left-mover contains poles, and thus 

is not necessarily analytic everywhere in ~1. As a result, when we attempt to integrate by parts in 
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order to prove the vanishing of the resulting longitudinal amplitude, the derivative in ~1 can hit 

a left-mover Green function, and this in principle gives a non-vanishing contribution. The typical 

form of the y dependence in the amplitude near a left-mover pole is 

(“l - “j)-l+*‘L’/4r (4.19) 

which is not necessarily analytic as y -+ Vj when the momentum invariants are in the physical 

region. However, an analytic continuation to sufficiently positive values of the Sij renders the 

expression completely analytic in ~1 so that the ~1 derivative vanishes. There are further subtleties 

in the regions where the loop is isolated on the fist external leg, and in the region where the loop is 

isolated at the end of a tadpole. The latter contribution can be eliminated in the string theory using 

Green-Seiberg [32] type contact terms, and in any event may be shown to drop out [22] in the gauge 

theory (infinite-tension) limit. In the former case, the momentum invariant in which we want to 

continue is kf, which vanishes identically on she& Because of O/O ambiguities [33], which we have 

discussed at length in previous work [34,35], contributions from this region of moduli space must 

anyway defined by an appropriate ‘offsheet’ prescription during which the momentum invariant 

does nol vanish. (The limit of vanishing momentum invariants would be taken at the end.) This 

means that the appropriate analytic continuation can then be performed. (It is also amusing to 

note that within the context of a dimensional regularisation scheme, all contributions with a loop 

isolated on an external leg vanish identically because of a complete cancellation of infrared and 

ultraviolet contributions [36,22].) The gauge invariance property holds for each partial amplitude 

since the above argument holds term-by-term for the left-movers. Each color trace structure is 

associated with a different set of left-mover Green functions, and so the coefficients of the different 

given color traces, that is the different partial amplitudes, are independently gauge-invariant on 

shell. 

5. The Field Theory Limit 

In order to extract gauge-theory amplitudes from the string amplitudes discussed in the pre- 

vious section, we must take the infinite-tension limit of the string theory, X + 0. If we examine 

the right-mover terms in equation (4X), we will see that every factor of a 0,s carries along a factor 

of 6, except for the t& multiplying the double derviatives of the bosonic Green function (E.B). 

Thus after performing all the & integrals, each term not containing double derivatives will carry 

an overall factor of A”-’ (after combining with the factors of A in the over-all normalisation). 

However, it is possible (as shown in appendix II) to integrate by parts to remove all the double 

derivatives of the bosonic Green functions. After this is done, the right-mover contribution contains 
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only fermionic Green functions and single derivatives of bosonic Green functions; and all terms in 

the amplitude have a uniform factor of A”-’ in front. (This form is also preferrable in that it makes 

the world-sheet supersymmetry of the right-movers manifest, in the sense that disappearance of 

the poles associated with the fictitious FI-formalism tachyon is manifest.) 

The presence of these explicit powers of X means that only those regions of the integral which 

yield an appropriate number of powers of A-’ will survive in the gauge-theory limit of vanishing 

,I. There are two sources of such powers: the large Inu region of the modular parameter integral, 

and poles in the differences of the locations of the massless-vector vertex operators, V<j = Vi - Vj. 

Even after extracting as many powers of A-’ as possible from poles in the Yij, it turs out that 

surviving contributions come only from the large-Imr region. The Vij pole contributions yield trees 

of massless vectors sewn onto a loop; and large Imr means that only the massless particles survive 

to run around the loop. 

In extracting surviving contributions to the amplitude, we must therefore ‘pinch’ together 

various sets of YS at a set of locations on the world-sheet torus, and then extract the large-ImT 

contributions to the modular-parameter integral. In this limit, the theta functions that comprise 

the various world-sheet Green functions have simple expansions in terms of ordinary transcendental 

functions, which makes it straightforward to compute the integrals explicitly. 

In the pinch limit each single pole in both a ~ij and a i?ij will remove one power of X from the 

over-all coefficient since we would get an integral of the form 

I 
&vi ‘“‘;;;;1”‘” = _ Xky2k, 

a. J 
(5.1) 

(Higher integer powers of luijl in the expansion about xzif = 0 correspond to the propagation 

of a massive string state; these yield expressions of the form (A&; . kj - integer)-’ aad thus are 

not relevant in the field theory limit.) The imaginary parts of the remaining Vi parts are then 

integrated over the size of the torus, a region from 0 to Irn~. If we rescale these variables to the 

interval [0, l), by defking ti = Im Vi/ Imr, we end up with an integral over the imaginary part of 

the modular parameter (the integral over the real part of the modular parameter merely enforces 

the level-matching condition on the closed-string states in the infinite string tension fitit) of the 

form 

I -dIm+n~) n.-Se-X#Imr = r(n” - 2) 
(Ad)=” -2 

where n, is the number of surviving unpinched v variables. (There are two additional powers 

of (Imr)-’ from the modular measure, and one from the partition function in four dimensions.) 

This produces an additional n, - 2 factors of A- l. From this we see that to get a surviving field 

theory contribution each integral over the pinched variables must contribute a factor of X-’ so as 

to completely cancel the overall Anml. 
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There are two contributions that deserve special consideration, when there is either me sur- 

vi&g insertion on the world-sheet (n, = l), or two surviving insertions (nY = 2). In both of 

these cases, the integrals are divergent. The former case corresponds to a tree of gluons coupled 

to a massless loop via a d&ton. Naively, these contributions will survive in the limit, but a more 

careful analysis [ZZ] using an appropriate regulator shows that they do in fact drop out. For our 

purposes here, we wilI be content to note that this contribution comes from an isolated region in the 

space of all pi, and thus could be thrown away by hand; and we shall discard them in the following 

discussion. The second set, with two surviving insertions, are more interesting; these graphs are 

logarithmically divergent, and correspond to the usual UV divergences of B cut-off field theory when 

the cut-off is taken to infinity. They can be handled either with the physical cut-off provided by the 

string, or via dimensional regularizstion [37]; in either case, the would-be divergence is absorbed as 

usual into the renormalization of the gauge coupling tram its S.&e-energy value to its value at a 

physical scale. In the case where the pinch effectively isolates the loop on an external leg (that is, 

all variables but one are pinched together), the on-shell Polyakov amplitude suffers from the O/O 

ambiguity mentioned in the previous section; with the use of the Minahan prescription, one can 

treat this contribution on the same footing as the other n, = 2 contributions. These issues have 

no effect on any of the arguments in this paper, and so we shall treat these contributions in the 

same manner as the remaining contributions with three or more surviving insertions; the latter con- 

tain only on-shell infrared divergences (which can also be handled with dimensional regularization, 

though we shall not do so explicitly). 

For the purposes of this section, it will be convenient to use the surviving remnant of conformal 

invariance on the torus to fix the coordinate v,, of the last leg to be the modular parameter 7. This 

does not change any of the counting arguments in the previous paragraph, since an explicit power 

of In17 will appear in the integrand to compensate for the missing integral. Let us begin with the 

contribution where none of the m have been pinched together, and determine which color structures 

survive in the gauge-theory limit. As we shall show later, the contributions with pinches do not 

give rise to any additional trace structures. 

To understand the structure of the surviving contributions, we should therefore consider the 

expansion of the partition function and the Green functions in powers of $I2 = e-*Imr. The 

integer powers of @l/l correspond to mass[-squared] levels of the string in units of 4x/X. Terms 

with negative powers of @‘I’ would correspond to tachyonic divergences (but as we shall see, there 

aren’t any); terma with positive integer powers of @I/’ would disappear in the infinite-tension limit, 

because they would fail to produce inverse powers of X in front of the integral. Only terms with no 

surviving integer powers of $1) will give rise to massless-particle contributions in the gauge theory; 
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and such contributions can only arise in certain sectors of the models. In the case of the particular 

model we are using, there is only one sector with massless at&es - the Neveu-Schwarz sector or 

W, sector in the notation of KLT [26]. 

In any term in the expansion of the integrand, the powers of $1’ coming from the left-movers 

are accompanied by powers of ei*Res, while the powers of q^‘/’ coming from the right movers are 

accompanied by powers of emixReT. Thus unless the left-movers supply the same number of powers 

of @1/1 in any given term as do the right-movers, there will be a surviving factor of e*-i*Re rx integer, 

and the Re r integral will kill the term. That is, the Re r integral (which in the field theory limit 

varies between -l/2 and +1/2) enforces the level-matching condition of the string, and allows us to 

consider the expansions of the left- and right-movers separately. For the purposes of determining 

the structure of the color decomposition, the expansions of the right-movers are in fact largely 

unimportant. 

The left-mover contributions to the partition function from the Neveu-Schwarz or W,, sector 

have the form 

2L 
WO [ 1 p (7) -t i-le-lniRcr(l + 2+ZriRer) 

11 

x 1 - 2i l/ZeniRe 7 CO* 2TPLi t 4iI?*“iRer C CO8 2XpLi CO* 2KpLj . 
i<j=l 

(5.3) 
Since the leading right-mover contribution is at order i-‘jl, there is no corresponding 6-l term in 

the expansion of the right-movers, and the leading term will be killed by the Be7 phase integral. 

The G-l/’ term would give rise to a tachyon contribution; but it is killed by the generalized GSO 

projection in the particular model we are considering. For the overall 4“’ pieces, the ones in which 

we are really interested, we must also consider the expansion of the left-mover Green functions, 

GF [ 1 ‘f (v) + -isign (e *i*ign(ir)Re~~-*ltl’m~ _ ~l/leriR~~,-*i~ig~(~)Rc~e*/tlImrel*i~ig~(~)p 

-ae’*i”“e-*“‘*“(~)R. Ye*ltlhn re4ri.i.n@)p 
> 

SF l/2 [ 1 P + -2#pwReT sin(2xp) - 2&?‘“‘R’7sh(4*p). 

(5.4) 
In expanding the product of the Green functions and the partition function, there are in 

principle three possible ways of obtaining the two powers of q^‘/’ needed to cancel off the leading 

4-l from the partition function: (a) a power of p from the partition function, combined with the 

leading (Q’) power from the Green functions (b) a power of 4 or two powers of $I/ from the Green 

functions or (c) one power of $1’ from the Green functions, and one from the expansion of the 

partition function. 
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Terms which contain the self-contraction Green functions SF[ ‘%] must have at least one power 

of glll coming from the Green functions, simply because the leading behavior of a self contraction 

Green function is @1/S. In terms not containing any self-contraction Green functions, the leading 

term in the expansion of the left-mover Green function GF[ I,$‘] contains a decaying exponential in 

Iti;[ Im7, which would in turn imply a vanishing contribution in the field theory limit were this term 

taken alone. On the other hand, the coefficients of the $I2 and 4 contain growing exponentials in 

the Ifid Imr that can cancel the decaying ones present in the leading-order term. Thus the only 

terms that will survive are those with an appropriate combination of leading-order and higher-order 

ten& from the Green functions. In particular, at least one of the powers of $/a must come from 

the Green functions even if the term does not contain self-contraction Green functions, and so 

alternative (a) is not viable. 

This result for terms without self-contraction Green functions can also be obtained by consid- 

ering the phases exp [Itxi sign(&) Re V;j], where in correspondence with the notation for the Y, we 

define cij = 4 - fij. Since each vi appears exactly twice in a left-mover term (the vertex operator 

at position Vi contains two world sheet left-mover fermions), this means that for each Vi the phases 

either cancel to give a factor of unity or else add to give a factor of e*SniR4 “<. Integrating the latter 

factor over Rev; then would lead to a vanishing result. This implies that the only non-vanishing 

contributions are those where the phases completely cancel. This can only occur when appropriate 

combinations are taken of the leading and higher order terms (in 4) from the Green functions again 

leading to the conclusion that at least one power of $f’ must come from the Green functions. 

For the left-movers of the model in Appendix I, we may group the world sheet ‘time’ boundary 

conditions, which control the generalized GSO projection into triplets (W + 0. WI, W+ 1 .W’,, W+ 

2. WI). Each of the time-boundary conditions in any given triplet sharer the same coefficient 

“7, since WI has a zero in the first right-mover position or “spin-compon~at” (which denotes 

the world-sheet fermion carrying the space-time index) and the coefficient Cr’ = - cos 2x& = 

C-1) no+n*+n~tn*+’ where fi = Ci=, niWi. In our model, the complex exponentials e-‘*i@c and 

e-rri@c are simply the cube roots of either 1 or -1, and so will vanish when summed over all 

time-boundary conditions. Only terms where the factors of .~*“‘~flc completely cancel can survive. 

This tells us that terms where the 4 comes from the third term in the expansion of a single Green 

function cannot contribute, because these would not give rise to an appropriate ‘interference’. 

We are thus iinally left with two options: (a) one power of $/1 comes from the partition 

function, and one from a Green function, or (b) each power of $1’ comes from a different Green 

function, with opposite phases for the complex exponentials of p G. In the fist case, the sum in the 

expansion of the partition function will leave only the sum over those oscillators that correspond to 
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the gauge group of interest; there are NC of these for an SU(N,) model. This will yield an explicit 

factor of NC when the powers of $1’ go according to the fist option. 

As an example, consider a left-mover term from the three-point function 

2~ [ 71 (+F[ l~](-yl~,G[ lf](-~as)G~[ ‘f](m) . (5.5) 

Takiig the ordering D1 2 Cl 5 fis as 4 + 0 (Imr + co), this expression becomes 

tj-le-l*‘Rer(l + 24+?wiRCT) 
len WO‘ 

1 - ,jl/*&Rer N,(e*“‘L% +,-hi&) + c eos2npLi 

i=N.+1 0 

x (-i) (e *iRa vzle--r,b, I Im T _ ,peliRore-liRe yle”,hl ,ImreS*i& 
) 

-nlhzIlmr _ ~l/le*~Rele-liR~~~~erlt~~limrelri~c 

j 

x (+i) (e~iRev~~e-+s~lImr _ ~ .‘lle”‘RIle-*iRe”S,e”i”“Ilmre-l*iP, 

> 

(5.6) 
where we have dropped the O(i) term in both the world-sheet femnionic contributions to the 

partition function and Green functions following the earlier discussion about the sum over boundary 

conditions. Expanding this out, we must only keep those terms where all factors of e**iReu’ and 

e*“Cs cancel. This leaves us with the simple result -iN.. 

In general, when we extract terms proportional to @ ’ 1 from a product of Green functions, we 

will end up with a factor of the form 

=xp (1411 - C IfiijlhT). 

As mentioned previously, in order to avoid an eventual exponential suppression in Im7, the sum 

must add up to exactly cancel the leading term. This will happen only if each ti appears once with 

a positive and once with a negative sign after expressing the absolute values in terms of the &s 

directly. After fixing V, = Imr, that is fi,, = 1, we may divide the integration over the remaining 

tii into different regions, where in each region these variables have a definite ordering, for example 

Cl 5 62 5 . ..&-I 5 fin. In this particular case, if we consider the fist option, where all Green 

functions contribute to the exponential in equation (5.7), then because G1 is smaller than all other 

Di, and because C,, is larger than the others, we can only obtain a cancellation if the leading termis 

&, and all other t’s appear only in the combinations Citl,i. That is, in arguments of the Green 

functions, the Y’S must appear as a cyclicly ordered set, 

or 

cF[ ~$..P~[ ;$G~[ ;j+zs). . . GF[ ;J+,,+,) (5.8) 

GF[~~](-~~.~)CF[~~](~~~)G~[~~](Y~)...G~[~~](Y,-~,~) . (5.9) 
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These two are associated with the trace structures Tr(7P . .T’-) and Tr(P- . . .TQ). For any 

permutation of this ordering of the vi, we obtain contributions to the coefficients of the appropriate 

permutations of the trace structure. 

In general, if we want a single power of $/2, only a product of Green functions whose arguments 

form an indioiaible cyclic set will survive in the infinite-tension limit. Given a set of n variables 

{v,, . , v,,), a cyclic set is the set of differences vij of the form v~(~),,(~+~, for some permutation CT, 

and where j and j + 1 are taken mod n. A cyclic set is indivisible if the underlying set of variables 

cannot be partitioned so that the cyclic set is the union of the cyclic sets generated by the different 

partitions. For example, given four variables Y I,. . . , ~4, then {YIP, “~3, ~31, ~11) is an indivisible 

cyclic set; {y,,v3,} is a divisible cyclic set; and {v 12, ~13, VI,} is not a cyclic set at all. A m-times 

divisible set is one that can be partitioned into m indivisible cyclic sets. 

In fact, left-mover fermionic Green functions always produce (divisible) cyclic sets, and each 

indivisible cyclic set is associated with a single trace. In the full string theory, there is no limit 

(up to the number of Green functions) to the number of indivisible cyclic sets that can appear in 

any term; but in the infinite-tension limit, as pointed out above, each indivisible cyclic set also 

carries a power of g’/z, and we can have no more than two if we want to obtain a non-vanishing 

contribution. Thus, the only surviving trace structures in the gauge-theory limit are those with 

one or two non-trivial traces, in agreement with the open string intuition. 

The self-contractions are associated with traces of a single matrix; but since the expansion of 

SF starts with q’/‘, these traces behave in exactly the same way as longer traces. 

Furthermore, the terms with a single non-trivial trace, as we have seen, pick up one power of 

$1’ from a set of fermionic Green functions, and mother from the partition function, the latter 

being accompanied by an explicit power of the number of colors. This gives us exactly the trace 

structure Gr,,l. The terms with two non-trivial traces give us the remaining trace structures 

Grwj. The remainin g pieces of the integrand know nothing about the number of colors, and so the 

kinematic factors that multiply these group theory coefficients are ‘universal’- independent of the 

particular gauge group we are considering. Using the symmetry properties of the amplitudes, we 

can restrict the set of Grqj to those with j 5 [n/Z] + 1. 

So much for the contributions with no pinches. What happens if we take account of pinches? 

In principle, pinches of cyclic set of Green could lead to extra traces without extra powera of Q’/‘, 

in turn leading to terms with more than two traces in the field theory limit. However, as we argue 

belo~w, such terms will not survive. 

Let us consider first pinching together some subset of the variables {vP, }g=,, leaving the 

remaining ones ({v~,}~~~) upinched. (The argument generalizes in a straightforward way to 
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the CIMC whve we pinch distinct sets of varisblea at different locationa on the world-sheet.) It is 

convenient to make the following change of variables, 

rl = %,Pl (5.10) 

wj = %i ,PI+L I 7 j = 2,3,...,p- 1 (WI = 1). 

The 7 coordinate is the size of a (small) disk on the torus at location p, which contains the points 

{uPj}, while the Wj are the relative locations of the vertex operators within the disk. Under this 

change of variables the measure becomes 

/fid’~pj = /d’pd’~fid’wj /Al’-‘. (5.11) 
j=2 

Recall that we are interested only in terms which produce p powers of X-l. Since each integration 

can produce at most one power of A-‘, and there are only p - 1 of the q, we can restrict our 

attention to those terms for which the q integration near r) Y 0 also produces a pole in A. Such a 

pole can arise only from terms of the form Iql-‘-“~l*. T erms with mismatched powers of r) and 

?j will be killed by the integration over the phase of 11, while terms with a higher negative power 

of 1~1 correspond to the would-be propagation of the fictitious tacbyon and will cancel by virtue of 

world-sheet supersymmetry. 

In the 1) -t 0 limit, the Green functions behave as follows, 

GF [ 1 ;;z (%v..t) + GF ;,” (P - vu,) t o(r)) [ 1 
GF QG [ 1 PO 

(%,Pd -+ iGp(l) - ~hj~/‘e”‘~‘~ sin(z?r,&) + ~(7) 
11 

GF + ~Gp(~;~\,,) - 2$/ae*iReT sm(2r0G) t o(I)) 
with analogous formula3 for the right-movers. These O($‘) terms do not vanish in general because 

the PO take on values which are a multiple of l/3. 

It is now a straightforward matter of counting powers of 7 and independent ws in order to 

determine which terms might survive in the gauge theory limit, and which will not. Let us begin 

with an example where we pinch a subset of IQ that does not itself contain a cyclic set. The 

left-mover term associated with the color trace Tr(T”~Ta~Ta~) Tr(T”*T”~) Tr(T”~T”~) is 

[GF(-Y~~)GF(-Y~~)GF(~~~)] [GF(-~)GF(Qs)] [GF(-~)GF(w)] (5.13) 

whete we have simplified the notation by dropping the boundary conditions associated with the 

fermionic Green functions. The pinch y - y -a 0 results in a contribution of the form 



where 11 E VII. The fact that we have a single pole in 7 means that we obtain (assuming the 

right-movers also have a single pole in ii) the required X-l from performing the 7 integral. This 

pinch, of course, has not increased the number of potential trace structures in the field theory limit 

since even after the pinch, each cycle still contributes at least a power of $P. 

In general, at most p - 1 Green functions can involve two vPI - otherwise the arguments of 

the Green functions would contain a cyclic set - so we will end up with 7-l or higher powers, 

depending on the precise arguments of the Green functions in the term. If exactly p - 1 Green 

functions involve two uPj, then assuming the right-movers supply the necessary poles a surviving 

contribution will emerge from this term. Such a term will have the [left-mover] structure 

GF (v.lm) fi GF (++,,p,) GF (vpi,.a) (5.15) 
j=2 

of which the leading pinch part will be 

~f&Gdk& hid . 

The overall power of 11, after combining with the powers from the measure, will be ‘I-‘, which will 

lead to a factor of X-’ (assuming the right-movers also supply a factor of l/q); and each Green 

function will give rise a pole in an independent combination of ws, so that the w integrations will 

each give one factor of X-’ (again assuming the right-movers supply the appropriate single poles 

in the 3s), for an over-all factor of X-(P-l), as needed. In this case, however, the charge matrices 

associated with the pinched variables will be in the same trace as the charge matrices associated 

with p and those unpinched YS wbicb complete a cyclic set; and in general an independent trace is 

not pinched off. 

If we do attempt to pinch off a set of Y’S which by themselves yield a cyclic set for a subset 

of arguments ~if of the Green functions, then we will find that either the 7 integration, or at least 

one of the w integrations, will fail to give rise to a required pole, or that we lose a power of Irm7 

at the end of the expansions. In each of these three possibilities, we lose a power of X-l, and the 

term will die in the gauge theory limit. 

As an example, consider the left-mover term in the six-point amplitude associated with the 

trace structure Tr(T”T”‘) Tr(T”‘T”*) Tr(T’~Ta*), 

[GF(-Q)GF(w)] [GF(-~)GF(Y,)] [GF(-I+&(QB)] . (5.17) 

If we don’t pinch some of the ~4, this term will not survive in the field theory limit, because it 

contains three traces. Let us now show that even if we pinch a a complete cyclic set of Vii, this 
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term will not survive in the field-theory limit. Taking the pinch ~1 - y -+ 0 and keeping terms 

through CJ(q-‘) yields 

(-& - 261”e”‘R”lsin(21rPG)) (& - 2B’l’e”‘ReZ~in(2~~~))G~(-~3()G~(~31)G~(-~g~)G~(~~~) 

= (-~)GF(-Y,)GF(“~,)GF(~~~)GF(~~~) 
(5.18) 

where 7 z ~1. Note that the single pole in q disappears (the two contributions cancel). As discussed 

above, unless there is a single pole in 7 we cannot obtain sufficient powers of X-‘, and this term 

will disappear in the field theory limit. Pinching additional variables beyond the complete cycle 

does not change matters: consider the same term (5.17) but with ~1, ~2 and y pinched together. 

Including the power of 7 that comes from the measure (5.11) we obtain in this pinch limit through 

- V& &GF(Q - P)GF(P - Q)GF(-w)G~(m) 

= -&GF(v, - P)GF(P- ~)G~(-“se)G~(vse) 

(5.19) 

where p z ~1. Because of the extra r~ from the measure, we are left with one inverse power of 

q, so the integral over 7 might lead to a power of ,4-l. However, the left-mover contribution is 

independent of wa c vrs/q. In particular, the leftt-movers term cannot have a single pole in wz so 

that it is not possible to extract a XV1 from the q integral. This would leave us at least one factor 

of X-’ short of completely canceling the overall power of X’ since every integral must contribute 

one power of .4-l. 

More generally, if the arguments of the Green functions involving the pinched variables form 

exactly a cyclic set (with no open ‘edges’), 

GF (“P, ,PI $p (“Pi-1%) (5.20) 

then the powers of r] will be wrong: we will end up with a leading term of q-l, which will eventually 

be kiied by world-sheet supersymmetry as it corresponds to the fictitious F,-formalism tachyon. 

The coefficient of the subleading pole 7-l in the expansion of the left-movers will vanish since 

it is proportional to CIJcle Vij = 0. It is also possible to obtain a subleading pole by expanding 

the right-mover contributions, because the bosonic Green function and its derivative contain non- 

analytic contributions; they depend on the Y’S in addition to the 3s. However, the non-analytic 

piece of d, has the form 

vi 
lmr 
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so that even if we obtain a single pole in 7 and 7 by expanding to include such factors, we will lose 

over-all powers of Jm7, because of the In17 in the denominator. The loss of a power of In7 will 

translate into a loss of a power of A-‘, and such a contribution will again die in the field-theory 

llmlt. 

On the other hand, if there is a proper subset of the pinched variables that is a cyclic set, the 

term will be 

GF ("wv+t) GF("PL~) f@ ("~i->~.j) fi Go ("hi-m) Go ("w.) 
j=2 j=l+2 

(5.22) 

Because the arguments of the Green functions contain a cyclic set, they will not be linearly inde- 

pendent. Since the total number of Green functions is fixed, this in turn means that the integrand 

is independent of some ws (or linear combinations of them) - in the expansion above, independent 

of WI. The integration over such ws will fail to produce a power of A-‘; but since any given inte- 

gration can produce at most a single power of A-‘, we will fail to get a sticient number of poles. 

[Note that even an integral - for example Jcf’wl~l-‘~~‘Il -WI-“+“’ - which produces powers 

of A-’ from different parts of the region of integration, will give only a single overall power of A-‘, 

because the different contributions just add.] 

In summary, only single-trace or double-trace structures survive in the infinite-tension limit; 

and single trace trace terms are always accompanied by an explicit power of the number of colors, 

so that the gauge-theory one-loop amplitude can be written in the form 

-4 = C C G*m;j(~)-L;j(o). 
j=l .eS./S,,, 

(5.23) 

6. Decoupling Equations 

Amplitudes with any number of external V( 1) g au e g b osons will vanish in a gauge theory with 

no matter content. We can use this simple observation to derive a variety of decoupling equations 

for loop amplitudes, similar to equation (2.6) for tree-level amplitudes. Unlike the tree-level case, 

however, there is a larger variety of equations at loop level. This comes about because there are 

my different trace structures which contribute, and in addition, substituting additional photons 

for gauge bosom beyond the tist can lead to new equations. 

In this section, we give the explicit form of the decoupling equations for the four-, five-, and 

six-point amplitudes; we present the general form in the next section. 
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The arguments of the previous section ahow that the gauge-theory four-point amplitude cm 

be written as follows, 

d+ = 2 c G*r;j(~(l)~..~(4))A*;j(~(l),~~~,~(4)) j=l .~E.t%/.%,j 

= 2z, 
NC Tr(T’-(~)T”.(‘JT’-(‘)T’r(~))A~~(u(l), v(2), o(3), u(4)) 

+ c Tr(Tas(‘I)Tr(T ~-(rlTa-(r)To,(~))A,;~(u(l), a(2), o(3), u(4)) 

UEkiZ. 

f c WT n~~~~T”-~~~)~(Ta~~J~Ta.~~~)A,i3(u(1),u(2),~(3),~(4)) . 

WE-C/Z: 

(6.1) 

III the second term of this equation, Z, refers to the cyclic permutations of the matrices inside the 

second trace, while the Z,3 refers to the exchange of two matrices inside each of the traces as well 

as the exchange of the two traces. 

If we take the fourth leg to be a photon, T’ becomes a matrix proportional to the identity 

matrix, and we obtain 

c ( 
Tr T’~(~‘Ta~~~~Ta-~~))Alil(~(l),0(2),0(3),u(4)) 

OE%/Z. (6.2) 
t Tr(T”‘T”‘T”‘)A,,1(4, 1,2,3) t Tr(T”‘T”‘T”‘)A+,(4,1,3,2) = 0 . 

Since 

c ~(T’-(‘,T”.(‘,T”-(“))A,;l(a(l),u(2),u(3),(r(4)) 
6ES.i.G 

= Ik(Tm’T-Ta’) c A,,,(o(l),u(2),~(3),4) + Tr(T”‘TalT’-) c A,;,(a(l),o(3),n(2),4) 
SE zs OEZS 

(6.3) 

end since the coefficients of the two independent trace structures in equation (6.2) must vanish 

independently we have the decoupling equation 

c Aw(a(l),0(2),~(3),4) t Aw(4,1,2,3) = 0. (6.4) 
uezs 

If we substitute photons for both the third and fourth legs we find an independent equation, 

c Al;l(~(l),u(2),~(3),~(4)) 
UES,/Z, 

t (A,,1(4,L2,3) t A,,1(4,1,3,2) t A4,1(3,1,2,4) + A4,1(3,1,4,2)) (6.5) 

+ A,;~(1,2,3,4) = 0. 
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The one-photon equation (6.2) allows us to eliminate the partial amplitude Adis when choosing 

to sun over all the colors in U(N) rather thanmerely those in SU(N), something that is convenient 

to do, as we shall see in later sections. (Were we to sum only over SU(N), A,;1 would not appear 

in a color-summed object since its trace coefficient vanishes when all external legs lie within the 

SV(N) algebra.) Substituting this equation into the two-photon equation yields a constraint on 

the other two partial amplitudes, 

A4;3(1,2,3,4) = c A4;1(~(1),~7(2),~(3)>~(4)). (6.6) 
es./24 

A computation of A+ is thus sufficient to determine the entire one-loop four-point amplitude. An 

explicit calculation will be presented elsewhere. 

Equation (6.6) also reveals that the partial amplitude AdG3 also has more symmetry than 

expected from the arguments of section 4. Its right-hand side is invariant under exchange of any 

two legs; and thus the left-hand side must be as well. 

The equations obtained by substituting three or four photons for gluons in the four-point amp& 

tude do not yield any new information; the three-photon-one-gluon amplitude vanishes identically, 

while the four-photon case gives a linear combination of the previous equations. 

Once again using the representation (5.23), we can write the five-point amplitude in the fol- 

lowing form, 

AB = 2 C Grs;j(o(l)...o(5))As;j(o(l),.‘.,~(5)) 
j=l ocS./s.,, 

=c A’. Tr(T’.~‘)T”-(~~T’.(‘~T’-~“T’-~‘))A~;l(u(l), u(z),cT(~),u(~),~(~)) 
OCS./Z. 

+ c Tr(T-‘*“1) Tr(T’~~‘~To~~‘~T”~(‘~Ta-~‘~)A~,1(~(l)u(~),~(3),u(4), r(5)) 
-ES./Z* 

+ c ‘I’I(T~-~‘)T~-(~~) Tr(T”.(‘,T”-~‘)T’-(~))A~i3(~(1), O(Z), o(3), u(4), o(5)) . 
~ES.lZZXZ3 

(6.7) 

Taking the fifth kg to be a photon, and setting the coefficient of Tr(T”lTa’T’~Ta’) to zero, 

we obtain the fust decoupling equation, 

~~,A,,l(b(l)l~(2),~(3),~(4),5)+ As,1(5; 1,2,3,4) = 0. (6.8) 

A new feature of the five-point amplitude is the emergence of additional constraints from other trace 

structures, still considering the one-photon substitution; the coefficient of Tr(T”lT”) Tr(TQT”*) 

must vanish, which means that 

As;dL2>3~4r5) + As&2,4,3,5) t As;3(3,4,1,2,5) t As;3(3,4,2,1,5) = o . (6.9) 

25 



If we substitute two photons for glum, only one equation emerges, 

t~~,(As;r(5,~(1),0(2).~(3).4) + As,1(4,o(l),u(2),a(3),5)) 
(6.10) 

+ As;3(4,5,1,2,3) = 0 

where CC&““) (‘cyclicly ordered permutations’) denotes the subset of S, that leaves the ordering 

of the ai unchanged up to a cyclic transformation. We can now solve these equations to eliminate 

the partial amplitudes Asit and Asia. Using the one-photon single trace equation (6.6) to substitute 

for As;~ in the two-photon equation (6.10) we obtain 

A&4,5,1,2,3) = C As;1(~(1),0(2),~(3),~(4),5). (6.11) 

oe WPy 

From this equation along with the one-photon double trace equation (6.9) we obtain also the 

constraint 

c &;I(@), c+), o(3), d4), ~(5)) = 0 (6.12) 
-CS.lZ. 

which is trivially satisfied because of the reflection identity (4.17). Just as in the four-point case, 

additional equations obtained by substituting three or more photon legs are not independent. 

The infinite tension limit of the six-point amplitude has the form 

da = c Ng~(Ta-(‘)Ta-(~)Tn-(J)Tn-(~)Ta-(~)T~-(~))A~;,(6(1),u(2),~(3),a(4),cr(5)o(6)) 
WE-%/Z. 

+ c Tr(Ta-I1l) Tr(T a-~~~TD-~~~To-~‘~Ta-~~~Ta-~E~)A~;~(u(l),rr(2),u(3),~(4),u(5),u(6)) 
*E&l& 

+ c ~(T”-WT”-W) ~(T”.WT’.WT “-(“G?-(‘))A~;~(u(1),~~(2),~(3),(~(4),~(5),u(6)) 
UES./Z.XZ, 

+ c a(T”-‘l)T’-(‘lT”-(Sl) Tr(T”-~‘~Ta-~~~TD-~~~)A~;~(~(l),u(2),u(3),u(4),u(5),u(6)) . 
SES,/Z:XZ, 

(6.13) 

Following the same approach as in the four- and five-point amplitudes leads to the one-photon 

equations, 

~~~A.;1(~(1),~(2),~(3),~(4),~(5),6) t Aea(6,1,2,3,4,5) = 0 

from the coefficient of Tr(T”lT”*T’sT”*Ta~) and 

(6.14) 

(A.;~(~,2,3,4,5,6)+A~;3(l,2,3,4,6,5)+A~;3(1,2,3,6,4,5)) 

+ (A.;.(l,2,6,3,4,5)+As,r(2,1,6,3,4,5)) =0 
(6.15) 
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from the coefficient of Tr(T"TO~)Tr(T'~To~Ta~). 

The two-photon equation arising from the Tr(T"'T"~T"'T"') term is 

o= c Ae;l(+), g(2), r(3), o(4), c(5), 6) 
&WP,- 
+ c (A~;~(Gru(l),u(2),~(3),~(4),5) oe.z, 

+ Ae,1(5,o(l),~(2),~(3),~(4),6)) 

t &;3(5,6,1,2,3,4) 

(6.16) 

while from the coefficent of Tr(T"lTaa) Tr(TQT’+) we obt& 

t &&2,5,3,4,6) + &;4(2,1,5,3,4,6) t &;4(1,2,5,4,3,6) t &,,(2,1,5,4,3,6) 

t Ae;r(l,2,6,3,4,5) t &;4(2,1,6,3,4,5) t &;,(1,2,6,4,3,5) + &;,(2,1,6,4,3,5) = 0 . 

(6.17) 

The letter equation contains no new information, however, as it is simply a sum of equations of the 

form (6.15). 

Finally, by taking the fourth, fifth, and sixth legs to be photons we obtain from the coefficient 

of Tr(T"'To'T") the decoupling equation 

+ c (A,,1(6,~(1),~(2),~(3),a(4),5) + A~;z(5,~(1),~(2),~(3),~(4),6) 
.EQop!“~’ 

+ Asi2(4,~(1), r(2), 0(3)+(5),0(6))) 

+~~,(a,,,(5,6,~(1),0(2),~(3),4) t A0;3(4,5,~(1),~(2),~(3),6) 

+ Aw(4r 6&),0(2),~(3),5)) 

+&2,3.4,5,6)t&,r(l,2,3,4,6,5)) =O. 

(6.18) 

No new equations emerge from terms with two traces after the substitution of three photon legs, 

and no new equations emerge from substituting more than three photons for gluons. 

We can again solve for the second partial amplitude, A 6,~; substituting into the two-photon 

single-trace equation (6.14) yields 

&;~(5,6,1,2,3,4)= c Aa,l(~(l),~(2),~(3),~(4),~(5),6) (6.19) 

&wPy’) 
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and substituting this into the three-photon equation (6.18) yields 

Aa,~(1,2,3,4,5,6)+Ae,~(1,2,3,4,6,5) = - c As,1(~(1),~(2),0(3),~(4),~(5),6). (6.20) 
WDJPp 

Note that in all the decoupling equations, Ae;d appears only as a sum of two terms, so that none of 

the decoupling equations will separate the two. In the six-point case, we see that the one-photon 

double-trace equation (6.15) is automatically satisfied for solutions of equations (6.19) and (6.20). 

This is in contrast to the situation in the five-point case, where the one-photon double-trace equation 

does lead to an additional constraint. 

7. General Decoupling Equations 

In considering the n-point gluon amplitude, we can derive decoupling equations by substituting 

one or more photons for giuons (that is, replacing an SU(N) generator by the identity matrix), 

and then looking at the coefficients of the various independent trace terma. 

Let us look first at the equations obtained from substituting a single photon for a glum. We 

take this gluon to be the last one; the coefficient of Tr(T”‘TO’ . .T”--1) yields the equation 

c &;~(~(l),..., u(n-l),n)+A,;l(n,l,..., n-1)=0. (7.1) 
c-zZ.-,{l ,..., n-1) 

where Z,,{al,..., 8,) refers to the set of cyclic permutations of n objects acting on the positions 

occupied by the symbols 81,. . . , s,. This equation allows us to eliminate Ani2 in all other equations. 

(This partial amplitude does not appear in the SU(N) amplitude, because it is the coefficient of 

a group-theory structure which contains the trace of a single generator. It may however appear 

in formula: for cross-sections calculated by summing over U(N) instead of SU(iV); this equation 

would then be required to show that the two forms are equivalent. It is not necessarily desirable to 

eliminate A,:a, since form&e which containit may wellbe more compact than those which eliminate 

it in favor of B sum of A,;l’s.) Extracting the coefficient of Tr(T”’ T-j-1) Tr(T”j . . Tam-‘), we 

tind the decoupling equation (3 5 j 5 [n/2]) 

c A,;j(l,... ,j-l,o(j) ,..., u(n-l),n) 
eEZ.-j(j ,..., n-1) 

+ c &j+l(dl) ,..., u(j-l),n,j ,..., n-1)=0. 
oEZj-l(l.....j-l) 

If n is odd, we obtain one more equation, involving only A,,L,,,~~+~: 

(7.2) 

c A++l)/t I,..., 
7X-l n+l 
-,o __ 

eq.-,),,{=p I..., n-1) 
2 ( > 2 

,...,o(n- l),n 
> 

t c An;(a+~)/a 
n-l-1 
- ,...I n-l,o(l) ,.*., u 

db-1~,I{1,...,‘} 
2 

(l+) =O. (7.3) 
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In presenting the remaining equations, we will find it convenient to introduce the following 

notation for: 

1. A set of ordered penutations, OPk”..*‘“‘{al, . . . , J,}, that is the set of permutations of n 

objects, acting on the symbols 81,. . . , a,, while keeping the order of II,. . . ,z, fixed. (The zj 

are a subset of the Sj,) This set has n!/m! elements. For example*, 

OP~“){1,2,3,4} = {(1234),(1324),(1342),(3124),(3142),(3412), 

(1243),(1423),(1432),(4123),(4132),(4312)}. 
(7.4) 

2. A set of cyclicly ordered permutations, COP?““‘m){sl, . . . , s,}, that is the set of permutations 

of n objects, acting on the symbols 81,. . . , a,, while keeping the order of ~1,. . . , I,.,, fued up 

to a cyclic permutation. (The zj are again a subset of the sj. Note that this definition is a 

generalization of the usage in the previous section, where aI,. . . , 8, were implicitly 1,. . . , rz.) 

This set has n!/(m - l)! elements. For example, 

COP~“‘){1,2,3,4} = {(1234),(1243),(1423),(4123) 

(2314),(2341),(2431),(4231) 

(3124),(3142),(3412),(4312)}. 

(7.5) 

3. The set of distinct partitions of the n symbols aI,. . . , s, into subsets of length m - 1 and n - 

mtl,P(:){Q,..., s,,}. The elements of P are expressed as permutations, with the elements 

mapped into the first partition listed first, in increasing order, followed by the elements mapped 

into the second partition, again in increasing order. This set has n!/ ((m - l)!(n - m + I)!) 

elements, unless n is even and m = n/2 + 1, when it has half that many elements (because we 

must then divide out by the 2~ symmetry exchanging the two partitionn). For example, 

P(i) = {(123456),(124356),(134256),(125346),(135246), 

(145236),(126345),(136245),(146235),(156234)}. 
(7.6) 

We can *e-express any element of a COP in terms of an element of the corresponding OP, 

followed by e. cyclic permutation, 

coPp=~){b,, . . .,d,) = Z,{z,,. ..,z*}ooP~l...*~){dl,. . .,d,} . (7.7) 

in particular, note that 

,op~1..... ){dl,. .,a,} = &{dl,.. .,s,} . (7.8) 

l we UC a arandard notation for permutations, the image of its action an I,. . . , n; (3 12 5 4)[{a bcde}] = 
{cabed}. 
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If we substitute two photons for two gluons, say the ultimate and penultimate ones, and 

examine the coefficients of the various trace terms, we obtain the following equations, 

c An;1 (o(l), . ..,cT(n- l),n) 

~ECOP(‘...“-‘)(l,...,n-L) n--L 

t c &;I (n - 1; o(l), . , n(n - 2),n) t A,;1 (n; u(l), . . . , u(n - 2),n - 1) (7.9a) 

.TEZ.-.{l.....n-2) 

t A,;s(n-1,n;1,...,n-2)=0 

c A,;j(l,...,j-l;o(j),...,~(n-l),n) 

~ECCP"":"-"{j,...,n-l) n-l 

t c L-%+1(41), . . , g(j - l), n - 1; o(j), . . . , o(n - 2), n) 
uEZj-I{l,..., j-l}xZ.-;-,(j ,.._, n-2) 

+Awj+l(dl)t.. . ,c(j - l), n; u(j), . . . , n(n - 2),n - I)] (7.9b) 

t c &;j+>(o(l)v..., b(j-l),o(n-l),n;j ,..., n-2)=0, (3 5 j 2 1421 - 1) 
~ECOP!“.‘i-“(l,...,j-l,n-l} 

where here we have indicated the separation into the first j- 1 and the remaining n- j+l arguments 

of the A ,,;j with a semicolon. The first of these two equations allows us to solve for AnG3. In general, 

the remeining Aqj will always appear aa mmu in the decoupling equations, and one cannot solve 

for them. The six-point amplitude, discussed in the previous section, provides an explicit example 

of this point (in equation (6.20)). If we substitute for A,:1 using equation (7.1), we find 

A,,s(n-l,n;l,...,n-2)~ c An;l(+), . . . ,u(n - ~),n) . 

UECOP!‘I;“-“~l,...,“-l) 
(7.10) 

The equations of the type (7.9b) are not independent of equation (7.2). To see this, note that 

in addition to the decomposition (7.7) given above, we can also decompose the COP’s in the second 

equation as follows, 

Cop$“-“{j,. ..,1? - 1) = Z,-j{j, . . .,n - 1)&Y,-j-l{j, . . .,n - 2). (7.11) 
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We can then rewrite the left-hand side of equation (7.9b), 

c &;j(l ,...,j-l;z(+)) ,. . . , z(a(n - 2)), r(n - l),n) 
‘E’“-j~i.....--l, 

.El.-j-,ti ,..., “-2, 

t c A,;j+l(z(l),...,z(j-l),n;u(j) ,..., u(n-2),n-1) 
‘ES,-,(I ,..., i-1) 

.El.-j-,I i,..., S.-z, 

+ c Anri+t(dl) ,...,u(j-l),n-l;u(j) ,..., ~(n-2),n) 
‘El.-j-*{i ,..., “-1, 

.Ezj-,tI ,..., i-l, 

+ c An;j+l(441)),.. .,z(c(j - l)),r(n - l),n; j,...,n - 2) 
‘ES,{1 ,..A -I,“-1, 
.ES,-1{1,..., j-l, 

= 
c 

1 
c &+(I ,. . . , i - 1; z(b(j)), . . , z(o(n - 2)), Z(~X - i), 71) 

oEZ.-j-t{j,...,n-3) rEZ.-j (j,...,n-1) 

+ c Am;j+l(41), . . . , z(j - I), n; u(j), . . . , o(n - 2),n - 1) 
rEZj-~{l,...,j-1) I 

+ c c 
NZ~-t(l,...,j-l) 

Awj+l(4l),...,~(j - l),n- l;u(j) ,..., a(n - 2),n) 
*EZ.-j-t{j,...,m-2) 

+ c Awj+g(z(41)) , . . . , z(o(j - l)), z(n - l),n; j, . . , n - 2) 
zEZj (l....J} I 

(7.12) 

which vanishes upon substitution of equation (7.2) in the two different terms. 

This is a general feature of the decoupling equations generated by substitution of more than 

one photon leg: only those which link coefficients of color factors with different numbers of non- 

trivial traces - in the one-loop case, linking coefficients of color factors with two non-trivial traces 

to the coefficient of the color factor with a lone non-trivial trace - are independent of previous 

equations. 

Thus we may need to substitute up to [n/2] photons for gluons in order to obtain the full set 

of decoupling equations (because this is the minimum number of identity matrices that can convert 

a double trace into a single trace), but further substitutions will yield only linear combinationa of 

existing equations. (As we have seen in the previous section, not all the equations obtained for 

[n/2J photons are necessarily independent.) The independent equations, besides equations (7.1- 

7.3) are obtained by substituting the identity for P--m+‘, . . . , T”-, and extracting the coefficient 
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of the resulting single-trace term, 

c A,;l(+),...,dn- l),n) 
,ECOP~~;“-~*‘){l,...,n-l} 

+5 c 
j=2 ,EP(y)f”-“.+1,.... “, 

,sri-,,zj-llro) ,..., “e-%n 
.ECOP(‘-:“-‘+“~I ,..., “-.“+l.P(il..... sl”-L,, I-> 

&;j(Ml))s~.~ 7 p(p(j - 1)),41), . . .,a(n - m + 1),4P(j)h. ..y+(n - l)h(“)) 

=o 
(7.13) 

where 3 < m 5 [n/2] + 1. For m = 3 we obtain once again equation (7.9a). If we substitute for 

A,+, using equation (7.1), we obtain 

- c .-&(~(l),...~~T(~ - l),n) 
o~CoP~“;“-~+“{l,...,“-l~ 

+IE c 
j=3 ,sP(m;‘)(“-,+. ,.... “) 

rrr,-,,=,4M~) .--... U-l,, 
.EcoP(‘-~“-“-+“~L ,..., “-“.+l.*(il,...,. c--ri> I-i 

An;j(dP(l)), . . . ,&(j - l)),dl), . . . , g(n - m + 11, d&i)), . . . y fl@(n - l)),dn)) 

=o. 

(7.14) 

If we continue to substitute using equations for smaller m, we find that although we cannot solve 

for Anim,3, we can eliminate them from the equations for larger m. Thus we obtain a simple form 

of the remaining decoupling equations, 

c A,,,(u(n-m+2) ,..., u(n),1 ,..., n-mtl)= 
~ES”,-,/Z,-,{?L-~+2 ,..., 7X) 

(-l)“‘+l c A,;l(a(l),...,u(n-I),+ 
(7.15) 

oEOOP(‘l.;“--+“{l,...,n-l} 

where 3 < m 5 [n/Z] + 1. For n odd, the independent equations can be combined to yield another 

equation involving only the A,;I, 

CA,;l(o(l),...,o(n-l),n)t c &I(+),..., cr(n-l),n) = 0. (7.16) 

~ECoP!ll.;'"-"'l'~l....,n-l) ~EaOP~(~“:‘)“.~.“-lJ~l,....n-l) 

The decoupling equations discussed in the section and in the previous section can provide a 

valuable consistency check on explicit calculations of the partial amplitudes, or else can be used to 

reduce the amount of work, for example eliminating the need to calculate the Ani3 independently. 
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8. The Color-Summed Cross Section 

Ultimately, we are interested in calculating a differential cross-section, summed over final colors, 

and averaged over initial colors. At tree level, we may use [6,5] the color decomposition (2.2) to 

write the color-summed differential cross section as 

-&.A& = gl”-’ D -Flz ‘&(‘j-4’1 . . .T”-(-I)’ ‘&(‘j-P(L) . . .T%-I) 

8 “I 

x 4(41),. ..>4=))&(~(1),. ..,~(70) (8.1) 
= p-4 c Tr(T”-1-J . . . T”-(‘I) ‘& (T’%(I) . . . Tad-i) A;(g)&,(p) 

~&S./Z” 

where s ummation over all ai is understood, and where we have introduced the abbreviation A,(u) = 

A,(Q( l), . . . > o(n))- 

Because the extra U(1) gauge boson decouples, one can sum over U(N) instead of .917(N); 

this is easier, because the U(N) Fierz identities, 

Tr(T”X) Tk(T”Y) = Tr(XY) (8%) 

Tr(T’=XTOY) = Tr(X) ‘h(Y) (8.26) 

are simpler than their SU(N) counterparts. The decoupling equations, discussed in the previous 

sections, can be used to show explicitly the identity of the U(N)-summed cross section with the 

SU(N)-summed one. Using these identities, and the form of the Casimir TOT” = N, (recall that 

we use the normalization Tr(TaTb) = P), it is easy to see that 

‘Ii (TO- ...T”‘)T~(T”‘...To-)=N: (8.3) 

while for any c # 1 (we denote the identity permutation by l), 

Tr(Ta~c-)...T’.(~,)~(Ta~...T~.)I NT-’ (8.4) 

because in this case one takes at least one detour through the Fierz identities, and every such 

detour costs a power of Nj. 

Thus 

<g,Wn = g’“-’ N: c 14Jo)12 
UES”/Z” 

t c Tr(T’-(-1 . . . T’-(U) Tr (To& . . . T”.l4) A;(,,)A,(,,) 

‘%“,‘./“- I 
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where the terms in the second sum are of O(N:-‘) or smaller. There is a subset of the CJ(IV:-‘) 

terms, that may be distinguished from the rest, because they are also absolute values squared. To 

extract them, separate out a set generated by cyclic permutations on n - 1 legs, 

+ c Tr(T”-(“1 . . . T%ll) n (pP..w . . . T”P.+)) qo)A& . g) (8.6) 

-ES”/=. nEI.-,.o*l 

+ c Tr (II’“-+) . * . T--w) n (T%..(l) ...T”-(-)) A;(o)A,(p. 0) 
.d:“!y” 

I 1 
(in the second and third terms, Z,,-I should be understood as a subset of S,, so that each of its 

elements acts trivially on the n-th symbol in its argument, that is p(n) is understood to be n). 

Now, for p E Z,-,, p # 1 (p shifting the the elements j units to the left), 

Tr(T”“,...T”‘)n(T”~(‘) . ..T%-UT“@.) = ‘&(T”--I . ..Ta.T’~cl,...T~,(.-l,) 

= n(T”--1 . . .T-IT~,+I . ..T”--IT”’ . ..T”i) 

= Tr(T”m-1 . . .T”‘T”’ . . .T”,) Tr(T”‘+’ . . .T”.-L) 

= n(T’i+’ . . .T’--rT”m-1 . . .T”aT”’ . . .T’,) 

= j$“-a-j)+(j-I)+1 

= NW1 
e 

(6.7) 

.g, 44, = !P-’ N.” .,& IA&+’ 
n 73 

+ A’:-’ c A;(o)A,,(p. u) 
.ES”,Z” .Eh,-,.,*l 

+ c Tr(T”+) . . . To-W) n (Ta4, . . . T”~+)) A;(o)A,(p . u) 
‘;‘,‘;d: I I 

. 

w3) 
Using the decoupling equation (2.6), we can rewrite the second term so that it has the s-e form 
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as the first me, and thus 

z*-- =g 
‘n-4 

[ 

NT-’ (Nj - 1) c IA,(m)I’ 
eS./Z. 

+ c Tr(T’- . . .T’M)) Tr(T”dU . . .T’%.(nl) A;(+&. .,) . 

.*;;;d;” I 1 (8.9) 
For the four-point case, the fist term is in fact the entire story; the second term vanishes 

because of the decoupling equation, and so we obtain 

c did, = g’N: (N.’ - 1) c IA,@)1 . 
colo*s ~ES./Z. 

(8.10) 

In the five-point case, using both the decoupling equation (2.6) and the reflection identity (2.3), 

explicit calculation allows UB to put the second term of equation (8.9) in the form 

2N. (N: - 1) c A;(a)A,(r . u) 
es. 12. 

(8.11) 

where r = (2 4 13 5). Note that rp is equivalent to a reflection: y1 = (4 3 2 15). We could redefine 

the summation variable o -t PQ, since the latter variable also sweeps cwer S,/Zs; averaging between 

these two forms, we obtain 

; x 2Nc (N; - 1) c 
UES.I.& 

[A;(c)A& . u) + A;(?. u)A,(r’ g)] 

= N, (N.’ - 1) c 

--EW-G 
[A;((T)A~(P. a) - A;(?. o)A&)] 

(8.12) 

where we have used the reflection identity (2.3). The full amplitude squared is of course real, and 

the first term in equation (8.9) is manifestly real, since it is a mm of absolute values squared. Thus 

only the real part of equation (8.12) would survive. But the latter expression is imaginary, and so 

it drops out, and for the five-point cross section as well, we find that the first term in equation (8.9) 

is exact, 

c d;d, = SON.3 (N.‘- 1) c IA,(cr)l’ 
colors -ess/z. 

(8.13) 

All O(N:-‘) terms arise from a single detour through the Fierz identities in the process of 

collapsing the product of the two traces. Consider for example, 

= ~(T”~Ta’T”‘T”‘T”‘Ta,Ta,Tn,TLI~TO.TO.TO,) 
(8.14) 
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where the subset of consecutive elements 2,3,4,5,6 had been shifted cyclicly by two units in the 

second trace on the first line. Because of this shift, a detour through the Fierz identities is required. 

Using the Fiere identity (8.2b) we break the last trace back into two traces 

N; Tr(T”‘T-T”) Tr(T”*T”T”) . (8.15) 

Observe that an additional cyclic shift of the elements of the second trace on the right-hand-side 

has no effect on the value of the product after summin g over the remaining indices; this means 

that we could have performed a cyclic shift of these elements in the second trace on the fist line in 

eq. (8.14) without changing the of the color sum of this term. (A further use of the Fierz identity 

(8.28) reduces this term to N:.) 

This example illustrates the general structure of all CJ(N,“-l) contributions; these come from a 

combination of two cyclic permutations. The first cyclic permutation forces the Fierz detour while 

the second cyclic permutation comes from the cyclic symmetry of the second trace in the double 

trace term of the Fierz detour. 

In order to express the general structure of the O(Npma) terms succinctly, it is convenient 

to introduce some more notation. Let zo E Zm{sl,. . . , s,,,} be the cyclic permutation that shifts 

elements by one unit to the left; we then write Z,,, = {I, z,,, .zj,. . . , zr-I}. We want to introduce a 

set which contains an additional cyclic shift of all the elements to the left of the resulting position 

ofs*,forea&EEZm: 

~z,-,{d,+,,...,,,}oz~. (8.16) 

(Zo and Z1 are understood to contain only the identity element.) In Appendix IV, we show that 

the union of such sets for ~1 = 1,. . . , n - 2 furnishes a complete list of additional elements of S,/Z, 

that contribute terms of CJ(N,“-‘). The existing constraints on the sum in equation (8.9) however 

indicate that we should remove some elements, and thus we define the set 

k-l k m-j+1 

zkz,(Sl, .*.vJk}= U U IJ Zm-j-l+l{Jj+l-l,...,S,}oZg[7]’ -Zk{s~,...,~k} (8.17) 

j=l m= j+* 1~1 1 
where *o[y] is the tit left generator of Z,,-j+l(sj,.. . ,J,}. The set Z?b (‘double-Z sub k’) contains 

1 -ls+l 
k+2 = ( > 4 

-&+I 
(8.18) 

= &k - l)(k - 2)(/c’ t 5k + 12) 
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elements. For example, 

Zd = {(3421),(4231),(4312),(2314),(3214),(3124), 

(1342),(1432),(1423),(2134),(1324),(1243)}. 
(8.19) 

With the set Z,,,-1 in hand, we can write 

NT-' (N: - 1) c IAn( 
~ES"l.2. 

t A':-' c A;(o)A,,(p. n) 
:::- '2 " 

+ - ,E& Tr (T--c”) . . . T-(l)) Tr(T”~~*~‘J . . . T’-(“)) A;(o)A,(p. a) 

#es:-,..sI”-~ 1 
(8.20) 

where Z&,-l is also understood to be embedded in S,. The third term in the sum is O(N:-‘). 

For large n, the use of &,-I in computing the next-to-leading color terms is probably preferrable 

to that of the (1,2) basis of Kleiss and Kuijf [16] because the number of terms in it grows only 

polynomially rather than factorially. 

9. Corrections to the Cross Section 

In order to calculate the next-to-leeding corrections to the differential C~OLIS section, we must 

compute the interference of tree and one-loop amplitudes 

.gi d;q, = c (e l t k-‘oopr f O(g”+‘)) (e + d;-‘O”p + cJ(gn+‘)) 
s&m 

=.z 

dp l e + 2 Be [A? *Ai-I-P] + 0(~2”) . (9.1) 

(Throughout the discussion here, the gauge coupling g should be understood to depend on the 

renormalization scale in the usual manner, though we shall not display that dependence explicitly.) 

As in the previous section, we will compute the next-to-leading correction to the cross section by 

summing over U(N) rather than SW(N). By virtue of the decoupling equations, this yields the 

same answer as summin g over SU(N); but the calculation is simpler this way. In performing the 

color SIUIIS, we will encounter two types of terms in the next-to-leading corrections, the first with 

two non-trivial traces (and an explicit power of the number of colors), and the second with three 

non-trivial traces. The latter terms are again suppressed by at least one power of N: compared to 
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the former, since we will use up an additional pair of charge matrices in reducing the three traces 

to one trace. 

Thus the next-to-leading order term can be written as follows 

l”/aJ+l 
2g’“-’ Re & 2 c T+W-) . .T”.W)~(T”dG . . .T%-11) T@‘“,(i,. . .T%,) 

I I PCS”/S.$i 
x A~*(c)A,;~(,P) 

= 2g c NC Tr(T”+ . . .Ta-W) ~(‘JW’r . . .T%.I) A~c*(o)A,,l(p) 

-,PES”IZ” 

1nDJ t1 
f “e,zz z c Tr(T”+) .. .Ta-(l~)~(~+(~~ . ..Tw-II)~(Tw~) _. .Tw-,) 

. I PES”IS.,j 

X A? *(C)A+(p) 1 an-2 =a 5 1 N”+l Re c .p l (o)A,;l (a) 
~ES”/Z” 

tRe c NcTr(T”-d-) . . .T’-•) ~@‘%I, . . .T”,c-,) Ape ‘(c)A,;l(p) 
-.Py;,/ In 

lnPJ+l 

t Reeegz 
” I 

g ,EsFs II Tr(T”+~ . . .T’-(‘1) ‘l.‘r(T”.+l.. .T”dt-1,) ~(T”,(I, . . .T%-)) 
” ” 

X Ap*(V)A,;j(p) 1 . 

J 
(9.2) 

As in the discussion of the tree-level crows section, we can identify a subset of the next-to-leading 
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color terms which have the same structure as the leading color terms, so that 

2g’“-’ 

1 

N:-’ (N: - 1) Re c A~‘“(o)A,,~(u) 
6S”lZ” 

+ Re c NC ~(T”+.l . .‘j--VU,) ‘&(T%‘l . . . T%(n)) A? *(~)A,&) 
‘;;p!; 

n 
ldl t1 

+&& E c T+‘“.(-, . .T”dll) ‘&@‘%I’) . . .‘J%li-0) ‘&(‘j%i, . . .T%Q) 

I I PES”/S”,j 

x A? l (a)A,&) 1 . (9.3) 
(Note that only the tree-level decoupling equations are required to obtain this result.) The last two 

sums inside the brackets are of order O(N:-I). 

The j = 2 terms in the last sum can be rewritten as follows, 

Re c c Tr(T’.w . . .T”w) T+T’W) T+W~I . . . T’W-1) A? *(o)A,;~(~) 

-5s./z. PES”IS.31 

= Re c c -‘YJk(T”+l . . . T%, . . . T”.(I)) l’$‘“d’, . . . TW.1) 
PGS.lS”,, .rr”-,,s”-,~l*...., (1) ,..., I, 

.EI”-,t-(l I,...., (I) ,..., r(l), 

x A:“(r.cr(l),...,p+j I...>=. ~(“),~(l))A”;j(~(l),. ,~(n - l)r~(n)) 

(9.4 

since the color sum is independent of z. (The hat ^ denotes an omitted element.) Using the tree- 

level decoupling equation, we then End that this sun vanishes identically. (Note that the trace of 

* single generstor does not vanish identically, because of the U(1) generator, but as expected this 

contribution drops out.) 

In the case of the four-point amplitude, the complete symmetry of Alis, noted in section 6, 
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means that the j = 3 terms in equation (9.3) have the following form, 

& c c n(T’-W,. .T-0)) ~(T”P(‘~ . . .‘j-e(V) ‘&(T%=W . . .T%+l) A:‘“’ l (g)A&) 
-L%/-G PES,IS,,3 

= Re A&,2,3,4) 

x c c Tr(Pw . . . T’W) ~(~~~~I) . . .~a,~*)) n(Ta61,1 . . . TaI(,j)Ay •(~) 

es*/z* PEWS,,, 1 (9.5) 
The sum over p leads to a completely symmetric tensor in the aj, so that the color sum is indepen- 

dent of o; as a result, we obtain a result proportional to 

Re A,;3(1,2,3,4) 

1 

c Ay*(u) 1 (9.6) UES4i.G 
which vanishes using the tree-level decoupling equation. 

The second term in equation (9.3) also vanishes for the four-point amplitude, and so the 

next-to-leading correction in this case has the simple form 

.gm Jd;d,l,,, = @N,3 (N: - 1) Re c A:... ‘(+%;~(a) . 
UES,/Z, 

(9.7) 

The calculation of A+1 will be described in detail in a future paper. 

For the five-point function, we can follow the same steps as in the tree cross section, and 

rewrite the second term as 

ZN; (N.’ - 1) Re c A:... l (r . p)Al;l(p) 
PESdZ, 

= NT (N: - 1) Re c [,:..’ ‘(7 . p)Ah;l(p) - A:... l (~)As;,(r . p)] 
P-8) 

PEW.% 
where + = (2 4 13 5) has the same definition as in section 8. 

Explicit calculation shows that the j = 3 terms in the five-point cross section can be written 

using a subset of Sb/&, 

Hs = {(1~345),(341~5),(31245),(21345),(32145),(34215)} (9.9) 

a* follows, 

Re c c Tr(T”w . . . T-0)) ~(T”IUQ”‘I(‘)) Tr(Tal(‘,Tal(~lTa~(.)) Ar., ‘(g)&&,) 

oES./Zs PEWS.,. 

= N,’ (N: - 1) Re c c Ap*(h.~)As;&) 
hE& PE.%/.%~. 

= zNj (N: - l)Re c c Are’*(h.p)As;a(~) 

“‘““PEP(;) 
(9.10) 
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where the last form of the equation uses the fact that for each partition in P(i), there are two 

elements of SS/&Q, and these are related by the reflection identity (4.17). This set of partitions is 

PC) = P(@U,...,5) 

= {(12345),(13245),(14235),(15234),(23145), 

(24135),(25134),(34125),(35124),(45123)}. 

Putting alI of the terms together, we can write 

<g, WG,,, = 28 N.’ (N: - 1) Re c A$. ‘(o)A~;,(u) 

-Z%/-% 

+N:(N,1-1)Re c [, 4r.. ‘(7 * P)&(P) - A:,.. ‘(p)A,;~(r . p)] 
PES./Z. 

1 

(9.11) 

(9.12) 

+2N: (N: - I) Re c 
hEH. 

c Ak”(h 

PEP(;) 

One could also use the decoupling equations to eliminate A 5;~ in favor of AEil; in this case, the 

third term inside the parentheses could be written as 

2N: (N: - 1) Re c A:“‘*(a) 
-X%/Z& 

x [3A~;,(o.(12345))+A~;l(o.(41235))+A6;1(6.(12435))+As,,(~.(31245)) 

tA6;l(v.(34125)) - Ab;,(u.(43125))-A6;,(u*(13245))- 3A6;1(o.(41325)) 

-A6;1(6.(13425))--~;1(~.(24135))+As;,(0.(14235))-3As;,(6.(14325))] . 

(9.13) 

The general sttucture of the subleading color pieces for the j = 1 part of equation (9.3) is 

similar to that at tree level. For the j = 2, these terms were shown to vmisb above. To display 

these terrna explicitly for 3 5 j 5 Ln/2] f 1, we must define another bit of notation, for cyclicly 

eonaecutioe pattitiona, or CCP(;), the subset of P(y) that maps the set 1.. . j - 1 into a set of 

elements that are consecutive up to a cyclic transformation (of 1.. . n) [so that 1 is considered the 

successor of n]. Because of the definition of the full set of partitions, the set j . . . n will then also 

be mapped into a cyclicly consecutive set of elements. For example, 

CCP ; 
0 

= {(12345),(23145),(34125),(45123),(15234)} (9.14) 

Note that for n even, and j = n/2 + 1, this set has already been reduced by the Z1 symmetry 

exchanging the two traces, because of the way P(T) is defined. The number of elements in CCP(3) 

is n, except for n even and j = n/2 f 1, when it is n/2. 
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We show in Appendix V that 

TlfT”” . . . T”‘) ‘&(‘f’=e~ . . . To-(I-I,) TQ“.(‘, . . .TW.,) = N.“-’ (9.15) 

if and only if cr E CCP(;t), which is the condition that no detours are taken through the Fiere 

identities. (For other elements of Sn/S,;j, the color-summed traces will be Np-’ or smaller.) 

With these sets, along with Z,,,, defined in the previous section, we can write the next-to-leading 

correction to the cross-section for general n as follows, 

c LeLlNL,O = 2!J 2n-2 N:-’ (Nj - 1 )e c R Ap’*(a)A,;l(a) 
colorn UES./Z. 

+ N:-’ Re c Ap. l (n . P)A,,;~(~) 
y; /i” I L 

’ N’-’ Re .,zz I ” g ,,I& A!Y l (o)An;j(p. 0) 

+ Re c 
N, TQ’“-4-, . . . T’LW) ‘&(T”d’) . .T’=dn)) Ap, l (a . p)&;l(p) 

rEs”lE. -e.“-,*‘e=.-, l+Jtl 
+Rec c c UES./Z. j=3 P~s.~s.,i-~~(~) 

‘&(T”-C-, . T’-(l)) ~(T”4, . . .T”P+-I,) ~(T”,.-cd . . .T’,.+,) 

x Are l (u)A,,;~(~. a) 1 
1 

(9.16) 

where the last two terms are of O(N:--3). 

As we have seen, for processes involving a small number of external gluons, the color-summed 

cross section through next-to-leading order in a, has a simple form. For alarger number of external 

gluons, we may note that although the number of colors in QCD is not that large, the expansion 

presented here is in l/N: (rather than just l/N& and thus a restriction to the leading term can 

provide a useful approximation. (For six or’ fewer final-state gluons, this approximation is quite 

good at tree level [38].) Of course, one may also wish to calculate the exact tree or next-to-leading 

matrix element; in this case, the expansion in l/N: provides a useful way of organizing B numerical 

calculation. For example, it is possible in a Monte Carlo calculation of an integrated cross section to 

perform the summation over the series in a probabilistic way, evaluating the leading terms (which 

are numerically more significant but cheaper to evaluate) more often, and the higher-order terms 

(which are numerically less significant but more expensive to evaluate) less often. The differing 

42 



frequencies of evaluation will be compensated by different weight factors for the different terms, 

with the frequencies (for example) adjusted so that each term in the color expansion contributes 

roughly an equal amount to the total error in the Monte Carlo evaluation. (An adaptive algorithm 

such BE VEGAS [39] could be used to select the frequencies and calculate the appropriate weights.) 

10. Summary 

We have presented a color decomposition for one-loop amplitudes in an SU(N) gauge theory 

with no matter content, analogous to the trace decomposition of tree-level amplitudes. The full 

on-shell amplitude A,, can be written as a mm over double traces times partial amplitudes A,,j, 

ln/3J+1 
wOOp = gn c c %j (g(l), . . . , o(n)) &;j (g(l), . . . , o(n)) (10.1) 

j=1 es./%,, 

where Gr,,j denotes a double trace structure, 

C+l(l , . . .,n) = Tr(1) Tr(T- . . .T”-) 

= N.Tr(T”...T’“) (10.2) 

Gr,,j (1,. . . , n) = ‘R(Ta’ . . .T”-‘) lk(Tn’ . . . Tam) 

and Sri;;; is the subset of the permutation group S, that leaves the trace structure Gr,,j invariant. 

The one-loop A,; j have properties analogous to those of their tree-level counterparts: they are 

gauge invariant, and satisfy a symmetry equation, 

VU E Sqj, Ad41) ~...,o(TI)) = A,;j(l,...,n) 

and a reflection identity, 

Avx;j(R,;j(l ,...,n)) = (-l)“A,;j(l,...,n) 

where 

Rn;j(il,. . .,i,) = (ij-1,. ..,il,in,. . .,ij) . 

In addition, they satisfy the decoupling equations 

c A,;l(+) ,.-., c(“-l),n)tA,;a(n,l,..., n-1)=0 
VEZ.-,{I ,..., n-1) 

~ez.-,~,,,~~~~l,...,j-l,~(j),...,~(=-l),n) 
I 1 

t C Awjtl(41) ,..., u(j-l),n,j ,..., n-1)=0 
(3 I j I L7+]) 

UEZj-,{l,...,j-1) 
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(10.3) 

(10.4) 

(10.5) 

(10.6~~) 

(10.66) 



c A,;j(o(n-jt2) ,..., u(n),1 ,..., n-j-+1)= 
aES,-,lS,-,{n-j+l....,n) 

(-l)j+l 
c 41 (+),...,o(n - l),n) . 

(3 5 j 5 [n/2] + 1)(10.6d) 

o~mP!“~;--‘+“(l n-l) I 1 

Examples of these equations for the four- through six-point amplitudes can be found in sec- 

tion 6. We have discussed the structure of the color-summed cross-section through next-to-leading 

order in a, in sections 8 and 9. 
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hospitality; and D. A. K. would like to thank the theory group at the University of Pittsburgh, 
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National Science Foundation, grant PHY-87-20221, and in part by the Department of Energy. 

Appendix I. String Model 

To constract an appropriate four-dimensional string model, we follow the fermionic formula- 

tion of Kawai, Lewellen, and Tye (KLT) [26]. We discuss the construction of a h&erotic string 

theory containing an SU(9) pure gauge theory in its infinite-tension limit. There is no particular 

significance to nine colors; it just happens to be an easy model to construct and analyze. It is not 

difficult to construct such models with other gauge groups, including S(1(3). 

The four-dimensional model at hand is specified by the five “basis” vectors, 

w,= (;y) 

w, = ($341 P) 

w, = (ll~f0+N~~ (a;;> (+) ($lo)) 

w, = ( a$Bo;ooi ; (o;o) (a;;> (I+)) 

(1.1) 
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where 1” signifies n contiguous components with value 1. The triplet grouping for internal right- 

movers arises fioom requiring world sheet supersymmetry [26]. The gauge group we will be interested 

in corresponds to the first nine left-mover oscillators, while the space-time index for vectors is carried 

by the fist right-mover complex fermion. It is straightforward to show that this model satisfies the 

KLT constraint equations presented in ref. [26] and hence is modular invariant. 

We do not present a complete analysis here; it is straightforward though tedious to verify the 

properties of the model. (A more detailed discussion was presented in earlier work [23].) Here we 

are interested in the spectrum of massless particles, since only these will survive in the infinite- 

tension limit. Sectors containing massless particles must have both left and right vacuum energies 

that are zero or negative. There are seventeen such sectors; sixteen of these are easily eliminated, 

as exciting a gauge oscillator in those sectors would necessarily yield a massive state. These sectors 

also contain no tachyons. The remaining sector is the Neveu-Schwarz (Wo) sector, which is the one 

containing the graviton and the gauge bosons. The coefficients of various terms in the generalized 

GSO projection in the Neveu-Schwarz sector are given by Co? = -cosZ*p, where fir is the 

boundary condition of the first right-mover. The generalized GSO projections in this model imply 

that the only massless particles which carry gauge charge of the SU(9) x SU(9) subgroup are the 

gauge bosom themselves. (The above properties hold independent of the choice of KLT ‘structure 

constants’, so long as they are consistent in the sense of ref. [26].) 

AS a rcsolt, this string model yields a tachyon-free pure gauge theory in the infinite-tension 

limit. 

Appendix II. Integration By Parts and Banishment of Double Derivatives 

In this appendix, we argue that it is always poasible to remove the double derivatives of the 

bosonic Green functions (E,) from all terms in the amplitude (4.4) (without generating any &:F 

terms) by appropriate integrations by parts. The idea is to integrate by parts until the double 

derivative is shifted to a Green function which depends on .s i?i which appears only once in the 

term of interest. A further integration by parts with respect to this iii then eliminates all B,‘s. 

This stmtegy might founder only if we cannot find a F appearing only once in the arguments 

of the diffennt Green functions, that is, if the ~‘8 which are in the argument of a 8~ are part of 

a cyclic set (in the wense of section 5), 80 that repeated integrations by parts only shifts the extra 

derivative around; in a cycle each P appears twice. 

However, in the general N-point amplitude (4.4) elements of a cyclic set cannot appear in the 

arguments of any e,‘s, because of the multi-linearity requirement on the polarization vectors. For 

example, consider a potential cycle of the form e,(i?-,,)&:,(&,,). . . &,(i?.~~) we would have ~1 . c1 
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associated with e&s), an ~3 associated with G&?r3) end so on until we come to &:a(ii.Nl) which 

would again require an ~1; this is not allowed !kom the multilinearity of the polarizations. This 

argument extends to the appearance of more than one tin with arguments in a cyclic set. 

We can also show that such cycles containing 6,‘s cannot be created by integrating by parts 

a 6~ external to the cycle. Consider, for example, the term 

(dE(~,Z)~:8(~13)‘..~E(SiN,))~E(~,M). WI 

One might worry that an integration by parts with respect to & could introduce a es into the cycle. 

However, this term cannot appear in the amplitude (4.4) because once again the multilinearity of 

the amplitude prevents it; a term of this form would require el to appear twice. This argument 

can be extended in a straightforward way to show that the process of integrating by parts does not 

create any 6~‘s or &F’S in cycles. 

[We can in fact avoid worrying about the appearance of &F’S, for if a 6’i, integration has 

brought down a fermionic Green function, the corresponding 0ih integration cannot bring down 

a bosonic Green function, since a 0i3 end 0,, with the same external index always multiply a 

given bosonic Green function, whether &B or 6 B. Rather, the corresponding 0~ must bring down 

another fermionic Green function, which will contain a pi in its argument. Thus a i? appearing 

in the argument of any initial GE will not appear in the argument of a GF. Furthermore, when 

we integrate by parts, in those cases when we do not eliminate all double derivatives, we shift it 

to another bosonic Green function in whose argument one of the V’S is the same as one in the 

argument of the previous e, (end thus cannot appear in the argument to a fermionic GF), and 

whose other argument is associated with a 0i30id pair (and for that reason cannot appear in the 

argument to a fermmnic Green function). Thus at no stage would integration by parts create a 

&,.I 

Integration by parts can thus always be used to remove all es’s from the amplitude (4.4) so 

that the only Green functions appearing in the amplitude are GF’s, GB’S and &,‘s. 

Appendix III. Notation and Normalizations 

We define theta functions for general twisted boundary conditions by 

Then 

(UIT) = I= ni(n+a-l/2)'rel*i(n+P-I/1)(V-P-I/I) nes 
(v 1 7) = e*ip’rearia(u-P-l/P)gl(Y + ar _ ~1~) 

(III.1) 

46 



where t91 = 9 [i] is th e conventional tist Jacobi theta function. 

We remind the reader of the definition of the Dedekiid q function, 

9(T) = ,+/la fi (1 _ piny 

= +9$] (w/2* 

where the prime indicates differentiation with respect to the first argument. 

The boaonic partition function is 

Zg(r) = (tl(T)q(r)dqf-D 

(III.3) 

(III.4) 

where D is the number of spacetime dimensions. 

We d&e 21[ Z](T) to be the partition function for a single left-moving complex fermion with 

[;I boundary conditions, 

where the phase is present in order to be consistent with the KLT definition [26]. It is really 

irrelevant, and could be absorbed into the definitions of the s ummation coefficients C;;‘. 

Putting the pieces together, the complete partition function for the set of fermions with [$] 

boundary conditions is 

4;](4 = 2B4p [;::](4’ep[;;;](T, 
= (q(T)ii(+qa-D 

'*nw e-a*i(l/a-QLi)(l/atP‘.i)g[o~~] (o(T) 
II 

'*aan 

i=l 9(T) II 
i=l 

0-W 

The bosonic correlation function, GB(Y), is defined via 

(X~(~~,Til)X”(vl,~a))~ = ~‘“GB(v = “1 - I+). 

It can be expressed in terms of theta functions, 

1 
GB(v) = -; In 2ae -+nu)~/Imr~ Cl (yl7) 

o’[:l (Olr) . 

(III.7) 

(III.8) 
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A dotted variable, for OUT purposes, will always be taken to signify differentiation with respect 

to i7, 

2=&X. (III.9) 

In a slight abuse of notation, we write the correlation function for right-movers as &B(Y) although 

in fact it is equal to m. 

We thus have 

(111.10) 

The fermi&c particle correlation function GF[;]( Y and anti-particle correlation function ) 

C?:p[i](u) are defined as follows (excluding the case 01 = p = 0): 

(@+(,I) @(Yz));~~ = 6”GF 
(III.11) 

where here the expectation value is understood to exclude a factor of the partition function. 

These correlation functions can also be expressed in terms of theta functions, 

GF [I ; (u) = “[;I (~14~‘[~1(01~) 
2*~[~1(~1+9[;1(01~) 

&[;](~=GF[;~;](Y)=-GF[;](-V) 

(III.12) 

where the last equality derives from a theta function identity. 

As Y -P 0 the various Green’s functions have the following behavior: 

(III.13) 

The self-contractions are obtained by taking Y -+ 0 but with the pole piece subtracted [40] so 

that 

(III.14) 

The vertex operator for emission of a gauge boson, in the Fl picture for the right-movers, is 

V’(E,~;U,Y) = -hgfiT”ij : Vit(v)9,(v) E . (+,qq + i&qq k . T(p)) ,idk ~(X(4) : 

(III.15) 
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or, using Grassman variables to put it into an exponential form, 

vy~, k; Y, i7) = &&vT2-~j : 
J 

d& dt& de, d& 

exp ( ihk . X(Y,F) + OIQ!it(v) + &qj(v) 

+e,e,c * ST(P) + iJj;S,k . qq + e,c . T(F)) : . 
(Ixr.16) 

The N-point amplitude is then given by 

AN= ’ L 
2(16+) X1 

Evaluating the correlation functions gives (in Minkowski space) 

1 
2(16x1) 

A’+-‘(fig)” T”‘,,k . . .T”-,IG- 

/ & / (cd@il d&l 43 d&t ) J (fJd’ui) CC$Z@) 

&a‘ 

E’xP [,,i . kj GB(Vi - Vj) 

- eilej26*’ &, GF 

(III.18) 

- tMj3Xki . kj GF 

+ ifi(ei#j,ki . Ej f Oi,Bj3kj . Q) ~~ 

- ifi;(eidWj s Ei - ej3ejrk; . Ej) cBtyi _ Tj) 

t BirOjrai . Ej GF 

+ Bi30irOj30jrci * Cj C?*(iii - Fj) 1 . 
Thif formula is valid in all sectors except Ramond-Ramond, where the fermionic zero mode de- 

mands special treatment. However, that sector enters only into parity-violating amplitudes, and 

so is not relevant to any of the calculations in tbia paper. The normalization of the amplitude has 

been calculated by Polchinski [41] and Sakai and Tti [42]. 
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Appendix IV. Structure of Two-Trace Next-to-Leading Color Terms 

We wish to show that any relative permutation which gives rise to a term of O(N:-l) from 

the sum over color indices of a product of two traces, is either an element of Z,,-, (1,. . . , n - 1) or 

of z&-1 (1 , . . . ,n - l}, where the latter set was defined in equation (8.17). 

Consider the product 

C = Tr(T”- . . ..‘=I) ~(T”.cl, . . . T%-L,~T-.) = Tr (To--l . . . T’XT’d’) . . . T%n-I,) (NJ) 

summed over aII a;. Assume only that p # 1. Then, without loss of generality, we may take 

P(i) = j forj=l,...,f-1 (f-y be 1) 

p(i) = j forj=l+l,...,n-1 (I may be n - 1) 
(NJ) 

where I > f. Define 1 = p(f) and s = p-‘(f) (note that f < t 5 1 and f < 8 5 I); using the Fierz 

identities, we can re-write C as 

NJ’-3+f-‘~(T” . .T’tT’=drI . . .TW,) 

= N;-‘ff-lTr(T”’ . ..T’J’+lTmd)+~l.. .T”d’,) n(T%-l . . .T”t) (IV.3) 

= N”-‘+I-‘n(T”’ ..T”‘+~T’=.w+‘, . . .T’,(*-I)T’=I-I . . .‘J’a~+IT”.++l,. ..T’,I’)). 

ThemarirhalpowerofN.thatcanemergefmmthetraceinthiscaseislt(l-t)f(t-f-l)=1-f, 

so that C (at we already know) cannot be greater than NT-l. This means that we cannot aflixd 

any more detours through the Fierz identities, so all the products of matrices inside the trace must 

collapse to Casimir operators; thus, we must have 

p(ftl)=t+1 

p(ft2)=t+2 

(IV.4) 

and 

P(f+I-t)=z 

p(a+l)=f+l 

4” + 2) = f t 2 

P(l) = f + r - d 
and, in addition, we must have t - f 1 I- a + 1 and 

p(s - 1) = t - 1 

p(.4 - 2) = t - 2 

~(d-((t-f-r+d-l))=t-(t-f-~+d-l). 
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From equations (IV.5) and (IV.6) it is clear, that by performing a cyclic transformation on the 

imageofelementsa-(t-f-I+a-1) ,..., 6 ,..., I under p, one can bring them into an ordered 

sequence. After such a cyclic transformation, the image of p has the form 

s-(t-f-lts-1) ,...,d,...,1,f,ffl,...) ftl-t (N.7) 

because of equation (IV.4). A further cyclic transformation on these elements will then bring them 

all back into an ordered sequence. From the definition of Z k, however, one can see that this 

sequence of cyclic transformations is exactly the inverse of an element of Z&,-, u Z,,-1. The reader 

may verify that the boundary cases (for example, t = I) are included correctly in this description. 

Appendix V. Structure of Three-Trace Next-to-Leading Color Terms 

We wish to show that if p E S,/S,,j, then 

C E n(T’- . .T”‘) Tr(T”dO . . .T%i-1)) n (T’cw . . . T”,w) = N,“-’ (V.1) 

if and only ifp E CC?(y), where the set is defined just before equation (9.14). We will assx+ne that 

j>landthatn-j+l>j-1. 

Define t = p(l). If P E CCP(;), then using the Fierz identities, we find for t + j - 2 5 n that 

C = YL'b(T"" . . .T") n(T" . .T"l+i-') n (T%+i-1 . . 'J--Tat . . . T"-1) 

= lk(T- . ..T'+-lTa(+i--l . ..T"--IT.%-1 . ..T-L) n(T"...TO,+,-a) 

= Tr (TO’ . ..‘f~t-~T~l+f-l . ..T”“-lT’.-I . . .T*4+,--1TO, . . .T’,+j-,T”‘+j-, . . .TO,) 
(V.2) 

= N!j-t)+(t-l)+(n-I-j+l)+l 

= p-1 
c . 

The evaluation in the case t + j - 2 > n is similar, and the result is identical. 

TO prove the ‘only if’ part of the assertion, consider C in the general case. We continue to 

label p(l) by 1, and define u = p(j); then 

C = ‘&(T”- . ..T”~+lTD.w.. . Tadi-0T~l-1 . . .T’L) ~(‘j-b(i, . . .T%w) 

=n(T’-... T’h+lTn.,i+a, . . .T”rWT”r-1.. .T”*+LT%w . . . T%i-~)T~a-l.. .‘J’.I) 
(V.3) 

if t < u, with a similar expression if t > u. Because there are only 2n- 4 matrices inside the trace, 

the ’ 1 POW- of N. that we can obtain after summing over the remaining ai is N:-‘, and 

that value we will obtain only if we avoid a detour through the Fiery identities, that is if the string 
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of matrices collapses to a product of Casimir operators. This can happen only if for some b 

p(j t 1) = u t 1 

p(j t 2) = u + 2 
and 

p(n) = u - 1 

p(n - 1) = u - 2 

p(jtb)=utbmodn p(jtb+l)=u-(n-j-b) 

(V.4) 

and for some b’ 

p(2) = t t 1 

p(3) = t t 2 
and 

p(b’) = t + b’ - 1 

p(j - 1) = t - 1 

p(j - 2) = t - 2 

p(b’ t 1) = t - (j - b’ - 1)modn. 

(V.5) 

Equations (V.4) tell us that the elements j , . . . , n must be mapped into a cyclic permutation of a 

set of elements that are consecutive mod n, that is up to a cyclic transformation on all n indices. 

Equations (V.5) tell us that the same thing is true of the elements 1,. . . , j - 1. Using the freedom 

to make cyclic transformations on the indices inside each trace, inherent in picking a p out of a set 

equivalent under S,;j, we can then express p as an element of CCP(;). 

Appendix VI. The Color Decomposition from Feynman Diagrams 

We give here an outline of a derivation of the color decomposition of pure gauge theory ample- 

tudes from a conventional diagr ammatic point of view. Every Feynman diagram in a SU(N) gauge 

theory with no matter fields is built out of five components: a three-glum vertex, V,; a four-gluon 

vertex, V,; a ghost-ghost-glum vertex, V,,; a gluon propagator, D,,; and a ghost propagator, Dg,,. 

The color structure of these objects is expressed in terms of the Kronecker delta on Lie algebra 

indices and in terms of the group structure constants. These structure constants are related to the 

generators vi8 

fake --$~([TO,T*]T=) (vI.1) 

where the appearance of fi is due to our normalization of the generators. 

The lirst observation is that because all structure constants involving an additional U(1) field 

will vanish, it will decouple from physical quantities; we can thus add a U(1) gauge field (and 

corresponding ghost), and perform all OUT sums in LT(N) rather than SU(N). We can now rewrite 
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the vertices as sums of coefficients times traces of generators: 

V, = igfa1a’a3K~““‘S (k,, k,, k3) 

= -$ (,(T”TT”“) - TP(T”‘T’~T”~)) K3 (k;‘, kp,kp) 

V, = -iga [fha. fbwK~y.lrsW + fborar fb.,.,~$WWsll~ + fbO,a.fbO.orK~~~.~,11.] 

=!g[( ( n T’LT”T’ST”.) + ~(T”‘T~ST”.Ta’)) (K;;Wb(r* _ KfUWSP.) 

+ (~(‘f”‘J’““J’.T”‘) + n(T”T”‘T’<T’2)) (Kf;WW _ Kf;cLIIIIII.) (VW 

+ (‘&(T”‘T”.T”T”S) + n(TO’T”‘T”T”‘)) (Kf$W‘lW* _ K~;M,W‘.)] 

V,, = -igfa~a’a~K~~p’wa (kl, k,, k3) 

= --$ (Tr(T”T”To3) - Tr(T”Ta’Ta’)) KS (y’, ke’, kp) 

where the Kd are kinematic factors depending upon the momenta flowing into the loop and the 

corresponding Lorentz indices. 

The propagators are proportional to 6 “““, 80 that in constructing [off-shell] tree diagrams, they 

will simply contract indices. Expanding a given diagram using equation (VI.2), and performing the 

contractions term-by-term will lead to products of traces such as 

Tr(T”‘T”‘T”‘) n(T-T”‘T”*) . W.3) 

So long as we are not creating a loop, the contracted indices will lie in different traces, and using 

the U(N) Fierz identities, we can reduce this to 

Tr (TaIT-Ta*T-‘) , 07.4) 

so that any off-shell tree diagram* can be written as a sum of kinematic coefficients times single 

traces of products of generators, 

c !Jl(T”+) . . .T”-c-j) K(o) , (VI.5) 

If we now close a loop, we will be contracting the indices of two generators with the same loop, 

and there are two possibilities, depending on whether these generators sit next to each other, or 

are separated by additional generators: 

Tr (T” . . .T’-T”‘Tn’Ta..+’ . . .T’-) 

TI (T”’ . . .Th.T-‘Ta.. . .T=wJWT”.P.+L . ..T”-) . W.6) 

l The reader should be careful to note that thin statement depen& on the off--ahell continuation al the theory. 
It ia 101 invariant under arbitrary Reid redelbdtiolu (which cormspond to diRerent off-shell continuations); 
however it is true for the conventional choice of Aeld variables used in Fey- diagunr. 
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In the fist case, the contraction will produce a Casimir operator, so that we will be left with a 

single non-trivial trace, and an explicit power of the number of colors, 

N. Tr(T-,..T-) V.7) 

while in the second case, the other Fierz identity tells us that we will get two non-trivial traces, 

Tr (TO’ . . .T”-‘-f-m+I . ..T”-) n(T”‘...T-) (VI&) 

in agreement with the string approach. While the heterotic string approach may be less familiar, 

it provides a direct and efficient method for explicit computations of the partial amplitudes. 

Beyond one loop, one can continue to split traces, or to generate additional powers of N,, 

keeping the number of traces fixed. These actions generated terms with T 5 L f 1 traces, and 

an explicit coe&ient of Nk+‘-‘. It is al so possible to combine previously split traces, generating 

terms with fewer than L + 1 traces, and an explicit coefficient less than the maximal one by 

some number of powers of N:. One must keep in mind that any given term may disappear if the 

corresponding kinematic coefficients conspire appropriately; this diagr -tic derivation only tells 

us the set of allowed trace structures. 
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Figure Captions 

Fig. 1. The planar diagram contribution to the one-loop five-glum amplitude in an open string 

theory. 

Fig. 2. A non-planar diagram contribution to the one-loop five-gluon amplitude in an open 

string theory. 

Fig. 3. A generic higher-loop contribution to the five-glum amplitude in an open string theory. 
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